j INgLab cLUsTAR~2x

HKUST

FLASH: Towards High-performance Hardware Acceleration
Architecture for Cross-silo Federated Learning

Junxue ZHANG, Xiaodian CHENG, Wei WANG, Liu YANG, Jinbin HU, Kai CHEN

Data Silos & Islands of Data

*
* * General
* *
Data
* a * Protection
* * Regulation
* 9o *
Ak \ RACFNE
MANE BRI

20214 8R 200
FtZB2EARRRASEFEAS

F=tTREWED

Emerging lawsuits and regulations restrict us to collect data into one central place for
processing. Data from different entities become island and are isolated from each other.

Cross-silo Federated Learning

1. Each Participant trains a local model

2. Instead of sharing original data, all
participants exchange their trained model

3. The model/intermediate results are
protected via cryptographic techniques

o™,

L)
\I1/

)

LK)
\ 1/

-

-

-

Horizontal & Vertical Federated Learning

Horizontal Federated Learning Vertical Federated Learning

Cryptographic Techniques

Examples of some used cryptographic techniques:

1. Additive HE, Paillier Lorizontal EL
Encryption Function E(p) - Vertical FL
If A, B, C are plaintext, then
A+B=C—- EA)+ EB) = E(C)

2. RSA blind signature-based PSI

X,) Vertical FL

Participant A Participant B

X

Double-edged Sword — Cryptographic Operations

We identify 9 commonly used cryptographic operations in cross-silo FL

ID Crytographic Operations

O1 Paillier Encryption

02 | Paillier Decryption - Preserving Privacy

O3 | Ciphertext Matrix Addition

O4 | Ciphertext & Cleartext Matrix Element-wise Multiplication.

05 | Ciphertext & Cleartext Matrix Multiplication
06 | Ciphertext Histogram Building » Performance Penalty

O7 | RSA Encryption

08 | RSABIlind Our previous work Quantifying the Performance of
Federated Transfer Learning has observed this problem and
delivers a brief analysis

09 | RSA Unblind

https://arxiv.org/abs/1912.12795

A Fine-grained Analysis

Applications & Their Sub-tasks Involved Operations w/o CO (s) w CO (s) Degradation
RSA-PSI Computing intersection 07, 08, 09 18.91 203.88 10.78x |
Encrypting logits O1 0 242.09 -
Aggregating logits 03 6.67 9.81 1.47x |
VLR Computing fore gradients” O3, O4 7.88 25.71 3.26 x |
(One Epoch) Computing gradients 03, 04, 05 32.68 1550.02 47.43x |
Total: 17.4x | Decrypting gradients 02 0 0.06 -
Computing loss 01, 03, 04 24.20 37.74 1.56 x |
SBT Encrypting gradients o1 0 486.73 -
(One Epoch) Aggregating gradients 03, 06 83.13 2125.50 25.57 x |
Total: 2.59% |” Finding split 02 0.78 24.71 31.51 x |

“ According to Federated Logistic Regression [39], the gradient computation takes two steps: fore gradients computation and gradients computation.

>The overall performance degradation of SBT is smaller than the sum of those sub-tasks because we do not include SBT’s pure cleartext computation or

networking communication sub-tasks in the table.

* All cryptographic operations do cause much performance penalty for cross-silo federated
learning applications
* Different applications may use different cryptographic operations
 Even within one application, different cryptographic operations are used at different time

Hardware Offloading

SM
Our research path:
CUDA Core CUDA Core CUDA Core
: : | : CUDA Core CUDA Core CUDA Core

Shared Memory

External Memory

Vendor-proprietary hardware GPU:

The hardware is designed for data parallel with small numbers, such as FP16, FP32.
Cross-silo FL requires pipeline parallelism with large integer numbers of 2048 bit and more.

.

Small amount of integers can be stored in shared memory of a SM

O

Pipeline execution pauses due to data exchange between shared and external memory

Hardware Offloading

Our research path:

FPGA as a prototype ASIC as an ultimate form

We seek a more efficient hardware acceleration architecture beyond the existing GPU architecture

Pipeline Parallism »
Inflated Data #

Design a hardware pipeline that is suitable for

efficiently executing these cryptographic
operations

A e s e EEEEEEEEEE EE.

Challenges

Cryptographic Operations Statically offloading all cryptographic operations to hardware
leads to the following two problems:

Problem 1: The hardware chip has limited hardware resources
to significantly accelerate all 9 operations

Problem 2: Hardware resource Is wasted because not all
operations are used at the same time

Our Observations

Paillier Encryption: given the public key (1, g), and Testbed experiments to breakdown the execution time
data m(0 < m < n), select a random of all cryptographic operations

r,0 <r <n,r € Z*the ciphertext
c=g".r" mod n? .

Addition: glveg Clphertext a and b’ the addition is Il Modular Multiplication Modular Exponentiation Other
a*b mod n

O 100t = — —
-
-
Ciphertext & plaintext multiplication: given ciphertext a o 90
and plaintext k, the multiplication is ¢ mod n”
0 L= 1
Similar operators are used in decryption and RSA- 01 02 03 0408 Of Ol Lt et
related operations
The core of these cryptographic operations is 2 basic The performance of these operations mainly reply on

operator: modular multiplication & exponentiation the 2 basic operators

FLASH: a Cross-silo Federated Learning Acceleration Hardware
Architecture

B
&

FLASH in One Slide

The software uses FLASH’s API to offload
cryptographic operations

Software Integration

FLASH uses majority of hardware resources
to build 2 basic operators: modular FLASH dynamically composes the cryptographic
multiplication & exponentiation operations with the basic operators.

Modular Exponentiation & Multiplication

Dataflow Scheduling

Engine

Modular Exponentiation & Multiplication Engine

Binary Exponentiation &

Algorithm 1: Montgomery Algorithm for Modular Mul-
tiplication with Radix 2"

Input: X = Y/5 " X728y = A ya ik,
M= St

Output: S = X - Y/2" mod M

: 1 SO +— 0;
P=m° mod N m,e,NE€ 77 Montgomery Algorithm s fori =0...1/k — 1do
ﬁ s g ((Si+X*Y?) - (=M~")) mod 7
4 for j =0...1/k do
P=ab mod N a,b,N e 7+ ¢ | end
7 Si_|_1 — Si_|_1/2k
s end
9 lfSl/k > M then
10 ‘ Sl/k%Sl/k—M;
11 end
12 return S;
Construct pipeline -
« L=0 e (=1 < - pre-read and cache data
— — — ~ inregister
Pre-read data R R R 2 .
Calculate «, 5, q Pre-Comp. - . |Pre-Comp. ' |Pre-Comp.| - pre-cc?mputatlon for
Loop for j = 0 w-bit Mult. [AVATA ! w-bit Mult. P o each i to calculate a, 5, q
Loop forj =1 w-bit Mult. [AVATA| @ w-bit Mult. A 0 w-bit additi
Loop forj = 2 w-bit Mult. [ATATA i wbit Mult. |A/ATK i ,}3 i ition
Loop forj=d — 1 w-bit Mult. [ATATA w-bit Mult. [ATATA w-bit multiplication

Modular Multiplication é 7

Start =—p Controller

\4

Modular Multiplication - Fnd

Dataflow Scheduling

1. The engine can work in two modes. They can switch
between modular multiplication and exponentiation

Dataflow Scheduling @ Modular Exponentiation

Start =—p Controller

1. The engine can work in two modes. They can switch *
between modular multiplication and exponentiation

Modular Multiplication

2. The core idea of dataflow scheduling is using an on-chip controller to determine which data paths should be active based on
which operation is offloaded on-demand.

r—-——=—=--- 1 r,n,n? Modular - Modul
I : | CRT Modules ey | CRT Modules oduiar | CRT Modules
»MI Engine Slot :B:ID | for Decryption -’D:DE Expr O::;gfgtlon ‘| for Decryption -’m Exponentiation | for Decryption
———————— o4 |
r-——"===" - r-——===- L m, n, n* Modular [} Modular r—-——===- 1 r=—==---" 1
~{1] Engine Slot B:Iu'ml Engine Slot :B:]:D' -[TI08] Multiplication || PO Multiplication Engine Slot Imm Engine Slot SOTH
! p p | |
vV e e e e e o 3 N e e e e oo 3 mn mod n? (1+mn)r"modn® || || |l OO S e L g
Data Split Data Merge '

All available paths for dataflow scheduling Dataflow for encryption Dataflow for decryption

Software Integration

Cross-silo FL Software

Python Wrapper

libsc.so

DMA Driver

Hardware

Listing 1: FLASH’s NumPy-like APIs

import flash_np as np
Generating 2 Paillier-encrypted arrays accelerated by FLASH

x1 =
X2 =

x3

x4 =
xb =

np.array([1, 2, 3], encryption="paillier")
np.array([4, 5, 6], encryption="paillier")

x1l + x2 # Homomorphic addition

np.array([1, 2, 3], encryption=None)
x4 * x1 # Ciphertext & cleartext multiplication

x3.decrypt () # Decrypting the ciphertext
x5.decrypt ()

Transferring the data from accelerator to host
x3.get ()
x5.get ()

Implementation

~30,000 lines of
Verilog
Prototyping with Xilinx
VU13P

The most adopted cross-silo
FL framework

~10,000 lines of C++ and
Python code

https://github.com/FederatedAl/FATE

SYNOPSYS oc

Validation

Synopsys DC for logical
synthesis

Synopsys PT and VCS
for validation

Evaluation — Cryptographic Operations

Intel Xeon Silver 4114 CPU (10 core)
NVIDIA P4 (share the similar INT8 TOPS with FLASH)

M~

10 CPU pRGPU EEFLASH -5 Acc. FLASH over CPU --Acc. FLASH over GPU [JFLASH-1 FLASH-2 @FLASH-3

]
DO
-]
U8

i oy |

|
=)

f 4 dd

o> or o Q};o\ @o\ %cgo\ &O\ %q)o\ q};o\ b@o\ %cgo\ &0\ q)o\ o° o" o o°

A A i | H|I Il
Ob*\e/Ob’\e o Ob’@ OD’K oo ¥ O("\e oo Oﬁ@ 6\ "~01 02 03 04 05 O7
(a) Cryptographic operation performance of all compared schemes. The left Y-axis 1s associated with the (b) Multi-accelerator performance

yptograp p p P P

bar chart and 1s 1n log scale. The right Y-axis 1s associated with the line chart. with selected operations.

kOP/s

102

p—t
)
Acc. Ratio

-

Norm. kOP/s
— (N

Figure 8: Performance of cryptographic operations.

For cryptographic operations:
1. FLASH outperforms CPU by achieving 7.7 X ~ 14.0 X speedup

2. FLASH outperforms GPU by achieving 1.4 X ~ 3.4 X speedup
3. The overall performance of FLASH is almost linear to the number of accelerators

Evaluation — Cross-silo FL Application

CPU: Intel Xeon Silver 4114 CPU (10 core)
GPU: NVIDIA P4 (share the similar INT8 TOPS with FLASH)
FPGA: Xilinx VU13P

o
Ne)

o

-8 CPU -©-GPU 4-FLASH

& CPU -©-GPU §©-FLASH 8- CPU -©-GPU ©-FLASH & CPU -©-GPU §©-FLASH

4,
2 S 2 S b
g g -e g ——0—F 5° —-
$;5 4 S _o——6—o—9 ¢ —o—o—0— 7
) »)) >
<1 <1 <1 <
| | 0
10 20 30 4 50 10 20 30 4 50 10 20 30 4 50 10 20 30 40 50
Samples (K) # Samples (K) # Samples (K) # Samples (K)
(a) RSA-PSI (b) VLR (c) SBT (d) HLR

Figure 9: Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

For RSA-PSI, VLR, SBT, and HLR:
1. FLASH outperforms CPU by achieving 1.6 X ~ 6.8 X speedup
2. FLASH outperforms GPU by achieving 1.1 X ~ 2.0 X speedup

Evaluation — Cross-silo FL Application

Acc. Ratio

0 D 10 15 20 20 33
Parameters (M)

Figure 10: Performance of 5 deep neural networks.

For deep learning models:
1. FLASH outperforms CPU by achieving 4.1 X ~ 5.4 X speedup
2. FLASH outperforms GPU by achieving 1.2 X ~ 1.6 X speedup

Evaluation — ASIC Evaluation

28nm Technology Library 12nm Technology Library

Area/Unit (mm?2) # Unit Total Area (mm?) Area/Unit (mm?) # Unit Total Area (mm?)
PCle Gen3x 16 8.46 1 8.460 (6.56%) 5.25 | 5.250 (4.04%)
DDR4 7.25 2 14.500 (11.24%) 4.43 2 8.860 (6.81%)
Engine Logic 0.093 800 74.480 (57.72%) 0.046 1900 87.499 (67.26%)
Engine Memory 0.033 800 26.200 (20.30%) 0.014 1900 25.927 (19.93%)
Dataflow Scheduling & Others 5.399 1 5.399 (4.18%) 2.561 1 2.561 (1.97%)
Total 129.04 (99.26%) - - 130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.

If implemented as an ASIC

1. FLASH achieves 7.11 X performance gain
compared to FPGA prototype with 28nm

technology library

2. FLASH achieves 23.64 X performance gain
compared to FPGA prototype with 12nm

technology library

Frequency (MHz) # Engines Performance*
VUI13P FPGA 300 300 1
28nm ASIC 800 800 7.11x 7
12nm ASIC 1120 1900 23.64x 1

Y We use the performance achieved by VU13P FPGA as a baseline. All performance
data achieved by other implementations are normalized to VU13P FPGA.

Table 5: ASIC performance estimation.

Conclusion

1. We identified 9 cryptographic operations that are widely used in cross-silo FL that
cause dramatic performance degradation.

2. We proposed FLASH, a high-performance hardware acceleration architecture for
cross-silo federated learning. FLASH leverages the observation that these 9

cryptographic operations are built upon two basic operators: modular multiplication
& exponentiation to achieve high performance and resource utilization.

3. We provided a fully-functional implementation of FLASH with FPGA and integrated

it with FATE. We also used Synopsys tools to evaluate FLASH as an ASIC. Testbed
and evaluation results show that FLASH is a promising solution.

Thank You! @BHNEI?%%?@%EN@ CLUSTAR* E=

AND TECHNOLOGY

