

FLASH: Towards High-performance Hardware Acceleration Architecture for Cross-silo Federated Learning

Junxue ZHANG, Xiaodian CHENG, Wei WANG, Liu YANG, Jinbin HU, Kai CHEN

Data Silos & Islands of Data

Emerging lawsuits and regulations **restrict** us to collect data into one central place for processing. Data from different entities become **island** and are isolated from each other.

Cross-silo Federated Learning

- 1. Each Participant trains a local model
- 2. Instead of sharing original data, all participants exchange their trained model
- 3. The model/intermediate results are protected via cryptographic techniques

Horizontal & Vertical Federated Learning

Horizontal Federated Learning

Vertical Federated Learning

Cryptographic Techniques

Examples of some used cryptographic techniques:

1. Additive HE, Paillier

Encryption Function E(p)

If A, B, C are plaintext, then

$$A + B = C \rightarrow E(A) + E(B) = E(C)$$

Horizontal FL Vertical FL

2. RSA blind signature-based PSI

Double-edged Sword — Cryptographic Operations

We identify 9 commonly used cryptographic operations in cross-silo FL

ID	Crytographic Operations
01	Paillier Encryption
02	Paillier Decryption
О3	Ciphertext Matrix Addition
04	Ciphertext & Cleartext Matrix Element-wise Multiplication.
O 5	Ciphertext & Cleartext Matrix Multiplication
O 6	Ciphertext Histogram Building
07	RSA Encryption
08	RSA Blind
09	RSA Unblind

Our previous work *Quantifying the Performance of*Federated Transfer Learning has observed this problem and delivers a brief analysis

A Fine-grained Analysis

Applications & Their Sub-tasks		Involved Operations	w/o CO (s)	w CO (s)	Degradation
RSA-PSI	Computing intersection	O7, O8, O9	18.91	203.88	10.78×↓
	Encrypting logits	O1	0	242.09	_
	Aggregating logits	O 3	6.67	9.81	$1.47 \times \downarrow$
VLR	Computing fore gradients ^a	O3, O4	7.88	25.71	$3.26 \times \downarrow$
(One Epoch)	Computing gradients	O3, O4, O5	32.68	1550.02	$47.43 \times \downarrow$
Total: $17.4 \times \downarrow$	Decrypting gradients	O2	0	0.06	_
	Computing loss	O1, O3, O4	24.20	37.74	$1.56 \times \downarrow$
SBT	Encrypting gradients	O 1	0	486.73	_
(One Epoch)	Aggregating gradients	O3, O6	83.13	2125.50	$25.57 \times \downarrow$
Total: $2.59 \times \downarrow^b$	Finding split	O2	0.78	24.71	31.51 × ↓

^aAccording to Federated Logistic Regression [39], the gradient computation takes two steps: fore gradients computation and gradients computation.

- All cryptographic operations do cause much performance penalty for cross-silo federated learning applications
- Different applications may use different cryptographic operations
- Even within one application, different cryptographic operations are used at different time

^bThe overall performance degradation of SBT is smaller than the sum of those sub-tasks because we do not include SBT's pure cleartext computation or networking communication sub-tasks in the table.

Hardware Offloading

Our research path:

Vendor-proprietary hardware GPU:

The hardware is designed for data parallel with small numbers, such as FP16, FP32. Cross-silo FL requires pipeline parallelism with large integer numbers of 2048 bit and more.

Small amount of integers can be stored in shared memory of a SM

Pipeline execution pauses due to data exchange between shared and external memory

Hardware Offloading

Our research path:

We seek a more efficient hardware acceleration architecture beyond the existing GPU architecture

Challenges

Cryptographic Operations

Statically offloading all cryptographic operations to hardware leads to the following two problems:

Problem 1: The hardware chip has limited hardware resources to significantly accelerate all 9 operations

Problem 2: Hardware resource is wasted because not all operations are used at the same time

Our Observations

Paillier Encryption: given the public key (n, g), and data $m(0 \le m < n)$, select a random $r, 0 < r < n, r \in \mathbb{Z}_n^*$, the ciphertext $c = g^m \cdot r^n \mod n^2$

Addition: given ciphertext a and b, the addition is $a*b \mod n^2$

Ciphertext & plaintext multiplication: given ciphertext a and plaintext k, the multiplication is $a^k \mod n^2$

Similar operators are used in decryption and RSArelated operations

The core of these cryptographic operations is 2 basic operator: modular multiplication & exponentiation

Testbed experiments to breakdown the execution time of all cryptographic operations

The performance of these operations mainly reply on the 2 basic operators

FLASH: a Cross-silo Federated Learning Acceleration Hardware Architecture

FLASH in One Slide

Modular Exponentiation & Multiplication Engine

Binary Exponentiation & Montgomery Algorithm

Algorithm 1: Montgomery Algorithm for Modular Multiplication with Radix 2^k

Input:
$$X = \sum_{j=0}^{l/k-1} X^j \cdot 2^{jk}, Y = \sum_{j=0}^{l/k-1} Y^j \cdot 2^{jk},$$
 $M = \sum_{j=0}^{l/k-1} M^j \cdot 2^{jk}, r = 2^k$
Output: $S = X \cdot Y/2^l \mod M$

1 $S_0 \leftarrow 0$;
2 for $i = 0 \dots l/k - 1$ do

3 $\qquad q \leftarrow ((S_i + X * Y^i) \cdot (-M^{-1})) \mod r$;
4 $\qquad \text{for } j = 0 \dots l/k \text{ do}$
5 $\qquad | \bar{S}_{i+1}^j \leftarrow S_i^j + X^j * Y^i + q * M^j$;
6 $\qquad \text{end}$
7 $\qquad S_{i+1} \leftarrow \bar{S}_{i+1}/2^k$
8 end
9 if $S_{l/k} > M$ then
10 $\qquad | S_{l/k} \leftarrow S_{l/k} - M$;
11 end
12 return $S_{l/k}$

Construct pipeline

Dataflow Scheduling

1. The engine can work in two modes. They can switch between modular multiplication and exponentiation

Dataflow Scheduling

1. The engine can work in two modes. They can switch between modular multiplication and exponentiation

2. The core idea of dataflow scheduling is using an on-chip controller to determine which data paths should be active based on which operation is offloaded on-demand.

All available paths for dataflow scheduling

Dataflow for encryption

Dataflow for decryption

Software Integration

Listing 1: FLASH's NumPy-like APIs

```
import flash_np as np
# Generating 2 Paillier-encrypted arrays accelerated by FLASH
x1 = np.array([1, 2, 3], encryption="paillier")
x2 = np.array([4, 5, 6], encryption="paillier")

x3 = x1 + x2 # Homomorphic addition

x4 = np.array([1, 2, 3], encryption=None)
x5 = x4 * x1 # Ciphertext & cleartext multiplication

x3.decrypt() # Decrypting the ciphertext
x5.decrypt()

# Transferring the data from accelerator to host
x3.get()
x5.get()
```

Implementation

~30,000 lines of
Verilog
Prototyping with Xilinx
VU13P

The most adopted cross-silo
FL framework
~10,000 lines of C++ and
Python code

Synopsys DC for logical synthesis
Synopsys PT and VCS for validation

https://github.com/FederatedAI/FATE

Evaluation — Cryptographic Operations

Intel Xeon Silver 4114 CPU (10 core)

NVIDIA P4 (share the similar INT8 TOPS with FLASH)

(a) Cryptographic operation performance of all compared schemes. The left Y-axis is associated with the bar chart and is in log scale. The right Y-axis is associated with the line chart.

(b) Multi-accelerator performance with selected operations.

Figure 8: Performance of cryptographic operations.

For cryptographic operations:

- 1. FLASH outperforms CPU by achieving $7.7 \times \sim 14.0 \times$ speedup
- 2. FLASH outperforms GPU by achieving $1.4 \times \sim 3.4 \times$ speedup
- 3. The overall performance of FLASH is almost linear to the number of accelerators

Evaluation — Cross-silo FL Application

CPU: Intel Xeon Silver 4114 CPU (10 core)

GPU: NVIDIA P4 (share the similar INT8 TOPS with FLASH)

FPGA: Xilinx VU13P

Figure 9: Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

For RSA-PSI, VLR, SBT, and HLR:

- 1. FLASH outperforms CPU by achieving $1.6 \times \sim 6.8 \times$ speedup
- 2. FLASH outperforms GPU by achieving $1.1 \times \sim 2.0 \times$ speedup

Evaluation — Cross-silo FL Application

Figure 10: Performance of 5 deep neural networks.

For deep learning models:

- 1. FLASH outperforms CPU by achieving $4.1 \times \sim 5.4 \times$ speedup
- 2. FLASH outperforms GPU by achieving $1.2 \times \sim 1.6 \times$ speedup

Evaluation — **ASIC** Evaluation

	28nm Technology Library		12nm Technology Library			
	Area/Unit (mm ²)	# Unit	Total Area (mm ²)	Area/Unit (mm ²)	# Unit	Total Area (mm ²)
PCIe Gen3×16	8.46	1	8.460 (6.56%)	5.25	1	5.250 (4.04%)
DDR4	7.25	2	14.500 (11.24%)	4.43	2	8.860 (6.81%)
Engine Logic	0.093	800	74.480 (57.72%)	0.046	1900	87.499 (67.26%)
Engine Memory	0.033	800	26.200 (20.30%)	0.014	1900	25.927 (19.93%)
Dataflow Scheduling & Others	5.399	1	5.399 (4.18%)	2.561	1	2.561 (1.97%)
Total	_	_	129.04 (99.26%)	_	_	130.10 (100.08%)

Table 4: ASIC resource evaluation for both 28nm and 12nm technology libraries.

If implemented as an ASIC

- 1. FLASH achieves 7.11 × performance gain compared to FPGA prototype with 28nm technology library
- 2. FLASH achieves 23.64 × performance gain compared to FPGA prototype with 12nm technology library

	Frequency (MHz)	# Engines	Performance ^a
VU13P FPGA	300	300	1
28nm ASIC	800	800	7.11×↑
12nm ASIC	1120	1900	23.64×↑

^a We use the performance achieved by VU13P FPGA as a baseline. All performance data achieved by other implementations are normalized to VU13P FPGA.

Table 5: ASIC performance estimation.

Conclusion

- 1. We identified 9 cryptographic operations that are widely used in cross-silo FL that cause dramatic performance degradation.
- 2. We proposed FLASH, a high-performance hardware acceleration architecture for cross-silo federated learning. FLASH leverages the observation that these 9 cryptographic operations are built upon two basic operators: modular multiplication & exponentiation to achieve high performance and resource utilization.
- 3. We provided a fully-functional implementation of FLASH with FPGA and integrated it with FATE. We also used Synopsys tools to evaluate FLASH as an ASIC. Testbed and evaluation results show that FLASH is a promising solution.