
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024 627

LiteFlow: Toward High-Performance Adaptive
Neural Networks for Kernel Datapath

Junxue Zhang , Chaoliang Zeng , Hong Zhang , Shuihai Hu , and Kai Chen , Senior Member, IEEE

Abstract— Adaptive neural networks (NN) have been used to
optimize OS kernel datapath functions because they can achieve
superior performance under changing environments. However,
how to deploy these NNs remains a challenge. One approach
is to deploy these adaptive NNs in the userspace. However,
such userspace deployments suffer from either high cross-space
communication overhead or low responsiveness, significantly
compromising the function performance. On the other hand,
pure kernel-space deployments also incur a large performance
degradation because the computation logic of model tuning
algorithm is typically complex, interfering with the performance
of normal datapath execution. This paper presents LiteFlow,
a hybrid solution to build high-performance adaptive NNs for
kernel datapath. At its core, LiteFlow decouples the control path
of adaptive NNs into: 1) a kernel-space fast path for efficient
model inference; and 2) a userspace slow path for effective
model tuning. We have implemented LiteFlow with Linux kernel
datapath and evaluated it with three popular datapath functions
including congestion control, flow scheduling, and load balancing.
Compared to prior works, LiteFlow achieves 44.4% better
goodput for congestion control, and improves the completion time
for long flows by 33.7% and 56.7% for flow scheduling and load
balancing, respectively.

Index Terms— Kernel datapath, adaptive neural network,
deployment.

I. INTRODUCTION

OS KERNEL datapath, a data path between higher-layer
applications and lower-layer network hardware imple-

mented in OS kernel, has provided a variety of important
networking functions, including congestion control (CC),
packet filtering, scheduling and queueing, etc. Recently,

Manuscript received 19 February 2023; revised 1 July 2023; accepted 4 July
2023; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
M. Caesar. Date of publication 17 July 2023; date of current version
16 February 2024. This work was supported in part by the Key-Area
Research and Development Program of Guangdong Province under Grant
2021B0101400001; in part by the Hong Kong Research Grants Council
(RGC) Theme-based Research Scheme (TRS) under Grant T41-603/20-R,
Grant GRF-16215119, and Grant GRF-16213621; and in part by the NSFC
under Grant 62062005. (Corresponding author: Kai Chen.)

Junxue Zhang is with the Intelligent System and Networking Laboratory
(iSING Lab), The Hong Kong University of Science and Technology, Hong
Kong, and also with Clustar Technology Company Ltd., Shenzhen 518000,
China (e-mail: jzhangcs@connect.ust.hk).

Chaoliang Zeng and Kai Chen are with the Intelligent System and
Networking Laboratory (iSING Lab), The Hong Kong University of
Science and Technology, Hong Kong (e-mail: czengaf@connect.ust.hk;
kaichen@cse.ust.hk).

Hong Zhang is with the David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
hongzhangblaze@gmail.com).

Shuihai Hu was with Clustar Technology Company Ltd., Shenzhen
518000, China. He is now with Huawei, Beijing 100015, China (e-mail:
hushuihai1@huawei.com).

Digital Object Identifier 10.1109/TNET.2023.3293152

we have seen a rising trend of adopting adaptive neural
networks (NNs) to optimize them because adaptive NNs can
continuously learn and adapt to the varying network envi-
ronments and outperform handcrafted optimization algorithms
due to their superb fitting capabilities. The adaptive NNs can
simultaneously perform model inference to give prediction
results based on the input data and conduct model tuning to
improve the inference accuracy by retraining the NNs through
these collected data. So far, adaptive NNs have been used in
CC [1], [2], packet forwarding & routing [3], scheduling [4],
etc, to optimize the function performance, e.g., to achieve
better goodput for CC, or better flow completion time (FCT)
for scheduling, etc. Taking CC for an example, Aurora [1], a
3-layer NN, can achieve 38.5% better latency than BBR [5]
while quickly adapting to different network environments.

Despite being promising, current deployment mechanisms
for adaptive NNs largely compromise the above advantages.
One approach is to deploy the NNs in userspace [1], [2], [3],
[4]. For example, Aurora uses TensorFlow [6] and GYM [7] to
deploy the NN with pure userspace transport implementation:
UDT [8]; MOCC extends Aurora’s design and further uses
CCP [9] to integrate the userspace-deployed NN with the
kernel-space networking stack. Userspace deployment is easy
with these existing mature tools but requires the NNs to com-
municate with the kernel-space networking datapath functions
frequently. In this paper, we discover that no matter how we
choose the communication interval, the cross-space communi-
cation hurts the datapath function performance, compromising
the benefit brought by the adaptive NNs. For example, our
experiments show that, with a large interval, e.g., 100ms, the
goodput of a single flow is 14.9% lower than a small interval,
e.g., 1ms, due to reduced responsiveness of the NN. In con-
trast, with a small interval, the throughput of the datapath
degrades by 40.4% when handling many concurrent flows
because of the non-negligible overhead (§II-B). Orca has also
observed this problem, but it takes a two-level control design
which mitigates but not completely solves the performance
issue [10].

An alternative approach is to implement adaptive NNs
directly in the kernel-space. Existing works have explored two
directions, but they both suffer from performance issues. One
direction is to implement complete adaptive NNs, including
both model tuning and inference, in the kernel-space [11].
However, such implementation suffers from inevitable dat-
apath function performance degradation due to 2 reasons:
(1) The model tuning algorithms required by adaptive NNs
consume significant computation resources, interfering with
the processing logics of datapath functions. (2) While using
advanced CPU instructions such as SIMD/FP instructions can
achieve high precision, it introduces overhead [11], [12], [13],

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6926-7801
https://orcid.org/0000-0002-5151-0997
https://orcid.org/0000-0001-7468-3746
https://orcid.org/0009-0005-3620-4843
https://orcid.org/0000-0003-2587-6028

628 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

further deducting the datapath function performance. In our
experiment, we observe that adaptive NNs in the kernel-space
degrade the network throughput by up to 90% even with mini-
batch. The other direction is to abandon the model tuning
and convert the NNs into lightweight NNs for inference only,
e.g., the NN is optimized via integer quantization [14], [15],
[16], [17] or converted into a decision tree [18]. However,
these lightweight NNs lack an important property—learn and
adapt to the environmental dynamics. Our experiment results
show that such a lack of adaptation capability leads to > 30%
performance degradation.

In this paper, we ask: Can we design high-performance
adaptive NNs for kernel datapath to optimize function per-
formance? To answer the question, we realize that the crux
lies in the fact that existing adaptive NNs perform model
inference and model tuning as a whole [1], [2], [3], [4]. How-
ever, model inference requires fast execution, which is better
suited in the kernel-space; whereas model tuning requires
high-precision and intensive calculation, which is better suited
in the userspace.

Based on this observation, we present LiteFlow, a hybrid
solution that decouples the control path of adaptive NNs
into a kernel-space fast path for model inference and a
userspace slow path for model tuning, so that both model
inference and model tuning can be executed in the right place
respectively. We note that the idea of decoupling has been
briefly mentioned in a recent work KMLib [11]. However,
it does not identify the challenges behind such decoupling,
nor does it provide any design or implementation to real-
ize the idea. In contrast, by LiteFlow, this paper takes the
first initiative to fully explore the challenges and present
comprehensive design and implementation to address these
challenges.

Specifically, we identify the following four challenges:
(1) The decoupling method requires two NNs of different
design targets: one is compatible with kernel-space devel-
opment environment (e.g., integer only, implemented in C)
and can be efficiently executed in kernel-space, the other is
compatible with userspace machine learning frameworks, e.g.,
TensorFlow, etc (e.g., use FP32, implemented in Python).
Thus, it requires non-trivial development and debugging
efforts. (2) As only the userspace-deployed NN is further
tuned, the kernel-space-deployed NN cannot timely react to the
changing network environment, affecting the function perfor-
mance. (3) Tuning the userspace-deployed NN needs data from
kernel-space, leading to performance degradation caused by
frequent cross-space communication. (4) A userspace-trained
NN may be over-complicated, causing a large inference over-
head, thus degrading the datapath performance.

To solve these challenges, we design LiteFlow to (1)
automatically optimize the NN via high-precision integer
quantization (i.e., performing integer quantization that can
preserve high precision) and leverages code transformation
technology (i.e., translating code written in one programming
language into another) to generate a kernel-space-compatible
snapshot (it is named as snapshot because it will not be
further tuned); (2) conservatively update the snapshot with
the userspace-tuned NN (by considering both necessity and
correctness, see §III-C for details) to make sure that it is
accurate under the changing environments; (3) perform online
adaption with batched data based on the observation that
network characteristics do not change at sub-second scale [19]
to achieve high accuracy and low overhead simultaneously;

(4) accurately conduct model optimization to guarantee the
datapath performance.

We implement LiteFlow by realizing both the userspace and
kernel-space designs described above. In userspace, LiteFlow
offers standard interfaces for users to provide their own cus-
tomized implementation of online adaptation functions. Thus,
it can be integrated with any learning frameworks and utilities,
e.g., TensorFlow [6], PyTorch [20], MXNet [21], GYM [7],
etc. In the kernel-space, LiteFlow is implemented with Linux
kernel v4.15.0 and follows the modularization principle to
separate the whole function into different kernel modules.
Therefore, it is general and can support different NNs for
different datapath functions.

To showcase LiteFlow can enable high-performance adap-
tive NNs in kernel datapath, we use it to optimize 3 popular
kernel datapath functions with 4 different NNs. For CC,
we evaluate LiteFlow with Aurora [1] and MOCC [2].
Experiment results show that for flow goodput, LiteFlow
with these NNs can outperform userspace-deployed NNs
by up to 44.4% while suffering no more overhead than
kernel-space CC algorithms such as BBR and CUBIC. For
flow scheduling, we evaluate LiteFlow with FFNN [19].
Experiment results show that LiteFlow with FFNN can out-
perform userspace-deployed FFNN by 33.7% for long flows.
For load balancing [22], we design an MLP model and
use LiteFlow to enable it in kernel datapath. Compared to
userspace-deployed MLP, LiteFlow with MLP can achieve
56.7% lower FCT for long flows.

On a more general note, we have seen an emerging trend
to move the networking functionalities into the userspace [8],
[23] or offload them to the hardware, e.g., SmartNICs [24],
[25]. Nevertheless, there is still a large body of works [1], [9],
[26], [27], [28] remain on the kernel network datapath which
LiteFlow can directly apply to improve their performance.
Meanwhile, for SmartNIC-offloaded adaptive NNs, we believe
that LiteFlow’s idea, albeit not directly applicable, can provide
certain insight. For example, they can offload a snapshot
NN on the hardware for efficient inference while leaving the
model tuning part in the software stack for easy and flexible
implementations.

This work does not raise any ethical issues.

II. BACKGROUND & MOTIVATION

A. Adaptive Neural Networks for Kernel Datapath Functions
Unlike traditional NN deployments which separate training

from inference, adaptive NNs combine them as a whole and
can continuously learn and adapt to the varying network
environment while delivering superb performance. Therefore,
there has been an increasing trend to adopt them to optimize
datapath function performance. Applications of adaptive NNs
for networking datapath include congestion control [1], [2],
flow scheduling [4], network routing/forwarding [3], etc.

Unlike traditional optimization solutions, which heavily rely
on operators’ expertise to achieve ideal performance, NNs use
a data-driven approach to automatically and continuously learn
the optimization strategies without any human involvement,
which can quickly adapt to the dynamics. Furthermore, due
to the tremendous non-linear fitting capabilities of NNs, they
have achieved better performance than hand-crafted ones.

Despite being promising, how to deploy these NNs remains
a challenge. One approach is to deploy the NNs in the
userspace, e.g., with TensorFlow [6], PyTorch [20], GYM [7],

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 629

etc. When the kernel datapath function needs to make some
updates, e.g., changing the flow sending rate in response to
network congestion, it will send the required input data to
the userspace-deployed NNs to calculate the corresponding
inference results. These results will then be sent back to the
kernel-space for execution.

While the aforementioned userspace deployment sim-
plifies the implementation, it introduces a performance
penalty. In order to quickly react to network variations, the
userspace-deployed NN needs to perform frequent communi-
cation with the corresponding kernel-space datapath functions.
However, frequent communication between the two spaces will
consume a lot of CPU resources, reducing the amount of CPU
resources that can be allocated to the kernel datapath functions
for executing their packet/traffic processing logic. As a result,
existing adaptive NNs cannot deliver high performance when
supporting a large number of concurrent networking process-
ing pipelines.

B. Performance Penalty
In this section, we perform testbed experiments to

demonstrate the performance degradation mentioned above.
We choose congestion control (CC), one of the most important
network functions, as the evaluated function. The algorithm we
choose is Aurora [1]. We deploy Aurora with TensorFlow [6]
and GYM [7] to enable online adaptation.1 To interact with the
kernel-space CC function, we further use CCP [9] to invoke the
userspace-deployed Aurora model (CCP-Aurora). CCP-Aurora
requires cross-space communication to perform congestion
control. We use TCP BBR [5], a traditional CC algorithm
completely implemented in the kernel-space, as the baseline.
We build a testbed with 2 servers connected to a Mellanox
SN2100 [29] switch via 100Gbps Ethernet links. We set the
RTT to be 10ms via netem [30] to match the design of these
NN-based algorithms. Each server is equipped with one 4-core
2.60GHz CPU and is installed with Ubuntu (kernel version
4.15.0). Note that one single TCP flow can reach around
1.6Gbps maximum throughput with our testbed settings.

Fine-grained cross-space communication is necessary to
achieve good performance: In this experiment, we launch one
single flow controlled by CCP-Aurora. We also set the receiver
link to be 1Gbps (via switch configuration) and generate
background UDP traffic (constant rate at 0.1Gbps) to emulate
network congestion. The buffer size is 150KB. The network
characteristics are stable and match the training environment
of Aurora. We consider three communication intervals, i.e.,
100ms, 10ms, and 1ms. For each communication interval,
we run the experiment for 10 seconds and measure the average
goodput of the flow every 0.1 seconds. The CDF of the results
is shown in Figure 1a.

As we can see, the achieved goodput decreases from
672.08Mbps to 585.17Mbps on average when we increase the
communication interval. With a large communication interval,
the datapath function cannot quickly reduce the sending rate at
the sender side when congestion arises in the network. As a
result, severe packet loss occurs in the network, degrading
the goodput of the flow. In Figure 1b, we further measure the
queue length of the bottleneck link. We observe that the queue
length is small and stable when setting a small communication
interval (e.g., 1ms). But when we increase the interval, the

1We use code from Aurora’s official code repository: https://github.com/
PCCproject/PCC-RL/tree/master/src/gym/online

Fig. 1. Fine-grained cross-space communication is necessary to achieve good
network performance.

Fig. 2. Toy example of how flow reacts to congestion when controlled using
Aurora with different intervals.

queue length increases and oscillates significantly. The results
indicate that a fine-grained communication interval is neces-
sary to make the CCP-Aurora responsive enough to achieve
good network performance.

To help readers better understand the phenomenon, we will
use experiments to visualize it. As we cannot observe the
ingress/egress throughput of the bottleneck queue at a very
fine-grained view on our testbed, we conduct contrived toy
experiments to visualize the problem. We deploy Aurora with
UDT [8] and configure UDT to communicate with the Aurora
model with an interval. The bottleneck link is an emulated
link using Mahimahi [31], with bandwidth and one-way RTT
set as 12Mbps and 10ms, respectively. In our emulated exper-
iment, only a single flow is launched and we visualize the
ingress/egress speed of the bottleneck link when the flow is
controlled by different intervals, e.g., 10ms and 2.5ms.

The results are shown in Figure 2. We observe that, with a
10ms communication interval, the sending rate of a flow can-
not even converge to the available bandwidth of the bottleneck
link under such a simple experiment setting. Consequently, the
flow suffers from degraded goodput. On the contrary, a 2.5ms
communication interval mitigates the problem and achieves
better flow goodput. The toy experiment further confirms

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

630 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 3. Fine-grained cross-space communication suffers high overhead.

Fig. 4. Software interrupt (softirq) caused by frequent communication leads
to the increasing overhead.

that for NN-based CC algorithms, such as Aurora, a fine-
grained communication interval is necessary even in very
simple network environments.

Fine-grained cross-space communication suffers from high
overhead: In this experiment, we launch N flows controlled
by CCP-Aurora (N = 2, 4, 6, 8, 10). Similarly, we vary the
communication interval from 100ms to 1ms. As a baseline,
we also run this experiment with BBR, which does not
have any overhead of cross-space communication. For each
communication interval, Figure 3 shows the normalized aggre-
gated throughput of N flows (normalized by the aggregated
throughput of BBR) as N increases. Here we use normalized
values to highlight the performance degradation caused by the
cross-space communication.

We mainly have two observations. First, when the number
of flows increases, the normalized aggregated throughput of
CCP-Aurora decreases. Second, smaller communication inter-
val leads to worse performance. When there are 10 concurrent
flows, the normalized aggregated throughput with a 1ms
interval is 5.5Gbps, which is less than half of the baseline
of 16.1Gbps.

The reason is that cross-space communication has sig-
nificant CPU overhead. When the kernel needs to invoke
a userspace program (i.e., to request the CCP-Aurora for
inference results), it generates a software interrupt to switch
the execution flow from the kernel-space to userspace, leading
to extra overhead in handling interruptions. When there are
multiple concurrent flows, the remaining CPU resource is not
sufficient to fully support the kernel processing pipelines of a
datapath function.

To confirm this, we use mpstat [32] to measure the
CPU usage when there are 10 active flows. We measure the
CPU usage under CCP-Aurora with different communication
intervals. We also measure the CPU usage of kernel BBR as
our baseline. Figure 4 shows the portion of CPU cycles spent
on different tasks. As we can see, with BBR, the software
interrupts only take 15.4ms (mainly for handling packet receiv-
ing logic), occupying only ∼12.6% of the total CPU execution
time. In contrast, with CCP-Aurora, when we decrease the
communication interval from 100ms to 1ms, the time spent
on handling software interrupts dramatically increases from
30.8ms to 133.9ms. The portion of time handling software

interrupts over total execution time increases from 20.6% to
72.3%. It is worthwhile to note that the software interrupts are
mainly caused by cross-space switching rather than Aurora’s
userspace execution. The result indicates that a fine-grained
communication interval will consume a significant amount of
CPU resources, leaving limited CPU resources for executing
normal packet processing logics for datapath functions. As a
result, userspace NN deployment suffers from high overhead
when supporting many concurrent flows. In some cases where
the CPU is not the bottleneck, e.g., the available bandwidth
is the bottleneck for Internet settings, we will not see con-
siderable performance degradation. However, we believe they
still suffer the cross-space communication overhead to some
extent.

Conclusion: When pursuing high-performance datapath
functions, the userspace deployment of NNs has an inherent
problem of suffering from either high overhead or low respon-
siveness. No matter how we set the communication interval,
we encounter an inevitable performance penalty.

C. What About Adaptive Neural Networks Direct in
Kernel-Space Datapath?

To eliminate the performance penalty caused by the cross-
space communication, one may deploy the adaptive NNs in
the kernel-space. There are two existing directions but they
both suffer from function performance degradation.

One approach is to directly implement the adaptive NNs,
both the NN optimization and inference, in the kernel-
space. This approach introduces dramatic NN development
and debugging difficulties since we have to use system
programming languages such as C and suffer from various
constraints, e.g., limited library support, etc, in the kernel-
space. Although there are some research works, such as
KMLib [11], targeting at lowering the development difficulties
for NNs in the kernel-space, they still suffer from inevitable
performance degradation issues. To realize NN adaptation,
we have to implement the model optimization algorithms, such
as Stochastic Gradient Descent (SGD) [33], ADAM [34], etc.
As these algorithms require over-complicated computations,
e.g., gradient calculation, directly implementing adaptive NNs
in the kernel-space degrades the performance. Furthermore,
in an integer-only development environment, implementing
these algorithms either suffers accuracy loss (e.g., approx-
imation using lookup table) or enlarged overhead of using
SIMD/FP instructions [11]. With the same testbed mentioned
in §II-B, we have implemented an SGD optimizer in the
kernel-space to optimize a hand-crafted C version of Aurora.
Our experiment results show that the throughput drops by up
to 90% even with batched data.

Another approach is to abandon the NN optimization and
convert the NNs to one-time lightweight NNs for inference
only. These lightweight NNs are potential to be executed
efficiently in the kernel-space since we can perform integer
quantization [14], [15], [16], [17] to avoid using SIMD/FP
instructions or transform the NNs into C/C++-based decision
trees [18] which are compatible with the kernel-space. How-
ever, these lightweight NNs lose an important property —
learning and adapting to the dynamics. Our experiments show
that without such property, the datapath functions suffer from
dramatic performance loss. In our experiment, we hand-craft
a lightweight Aurora model optimized via integer quantization
and deploy it in the kernel-space. Initially, we tune the pattern
of background traffic as that when we train the Aurora

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 631

Fig. 5. Lack of online adaptation leads to performance degradation with
traffic dynamics.

model, then we randomly change the traffic pattern every
20 minutes. We measure the goodput of a single flow and
the results are shown in Figure 5. From the experiments,
we observe that when the training environment fits the testbed
environment, Aurora can reach ideal performance. Yet when
the environment dynamically changes, the performance of
Aurora degrades because it cannot learn and adapt to the new
environment.

Conclusion: Directly deploying adaptive NNs in the
kernel-space leads to suboptimal performance because of
either large implementation complexity/overhead or lack of
adaptation towards the changing environment.

III. LITEFLOW

Given the current adaptive NN deployment solutions, either
in userspace or in kernel-space, have an inherent prob-
lem of function performance loss, we ask: Can we build
high-performance adaptive neural networks for kernel data-
path to optimize datapath functions? Our answer is LiteFlow,
a hybrid solution to build high-performance adaptive NNs for
kernel datapath.

Instead of adopting one control path for both model infer-
ence and model optimization as the state-of-the-art adaptive
NNs do, LiteFlow decouples model inference from model
optimization into two paths so that each of them can be
executed in the right place. Specifically, LiteFlow builds a
kernel-space path, i.e., fast path, for model inference, and a
path from kernel-space to userspace, i.e., slow path, for model
tuning.

Why LiteFlow Works?: As discussed above, LiteFlow puts
the NN inference in the fast kernel-space path while leaving
NN optimization in the slow path. Our insight is that (1) NNs
for kernel datapath functions require very frequent inference
to be responsive. Thus, putting them in the kernel-space can
reduce the overhead. (2) Model tuning, i.e., online adaptation,
is suitable in userspace because it can benefit from easy-to-use
APIs, advanced features (such as floating point/multi-thread
support) brought by mature software and libraries in the
userspace.

Design Challenges: Although the decoupling idea has been
briefly mentioned in KMLib [11], the challenges behind the
idea are left unexplored. To the best of our knowledge,
we are among the first to identify these challenges and provide
comprehensive designs and implementations to address these
challenges by proposing LiteFlow.

Specifically, we identify the following four challenges:
C1. The decoupling method requires two NNs of different

design targets: one is compatible with the kernel-space
environment and can be efficiently executed there, while
the other one is compatible with userspace machine learn-
ing frameworks. Thus, users have to develop two NNs,
and suffer from restrictions in kernel-space as discussed

Fig. 6. LiteFlow Architecture.

in §II-C, which introduces non-trivial development and
debugging efforts.

C2. Since only the userspace-deployed NN is further tuned,
the snapshot in the kernel-space cannot timely react to the
changing network environment, degrading the function
performance.

C3. Tuning the userspace-deployed NN requires continuously
delivering data from kernel-space to userspace. Such
frequent data exchange causes massive cross-space com-
munication, yielding a large overhead.

C4. The kernel-space is performance-critical. An arbitrary
userspace-trained NN may cause a large inference over-
head if the NN is over-complicated, further deducting the
datapath performance.

To address these challenges, we design LiteFlow to:
• automatically optimize the NN via high-precision integer

quantization and leverages code transformation technol-
ogy to generate a kernel-space-compatible snapshot.

• conservatively update the snapshot with the userspace-
tuned NN to make it accurate under the changing
environment. Specifically, LiteFlow considers both cor-
rectness: LiteFlow waits for the online adaption to
converge, and necessity: LiteFlow minimizes the number
of snapshot updates to avoid the interference of function
performance caused by kernel-space locks.

• batchwisely perform online adaption based on the net-
work characteristics to simultaneously achieve high
accuracy and low overhead.

• accurately perform model optimization to reduce infer-
ence overhead while keeping high model fidelity.

Existing related works [11], [14], [16], [17], [18], [35],
[36], [37], [38], [39], [40] that fail to simultaneously solve
the four challenges do not lead to a practical and deployable
solution (see more discussions in §VIII).

Architecture & Workflow: Figure 6 shows the architecture
of LiteFlow. LiteFlow is a hybrid framework, which consists
of both userspace and kernel-space components. LiteFlow also
provides APIs for users to implement their customized model
tuning algorithms (more details in §IV).

The workflow of LiteFlow is as follows: Given a
userspace-designed and trained NN, LiteFlow first generates

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig. 7. LiteFlow’s integer quantization does not lose much accuracy by
adding scaling layers.

the NN snapshot, which will be deployed in the kernel-space
fast path for inference (§III-A). Meanwhile, LiteFlow also
collects the input and output data of the snapshot to further
tune the userspace-deployed NN in the slow path in a batch
mode (§III-B). After every training batch, LiteFlow evaluates
whether it needs to update the snapshot from both correctness
and necessity aspects (§III-C and §III-D). It is worthwhile to
note that LiteFlow does not explicitly evaluate the performance
of a NN but relies on the common wisdom that online
adaptation is likely to lead to a better NN after it converges.
Moreover, if the NN to be deployed is over-complicated,
we will perform model optimization before deploying the
NN (§III-E). We will show how LiteFlow works in detail in
the following sections.

A. NN Snapshot Generation
In order not to compromise the performance gain brought

by adaptive NNs, LiteFlow has to generate accurate and
efficient kernel-compatible snapshots. To achieve it, LiteFlow
first performs high-precision integer quantization to (1) avoid
the overhead of using SIMD/FP instructions and (2) keep high
accuracy. Second, to make the snapshot kernel-compatible,
LiteFlow leverages code translation technics to transform the
userspace NN into a kernel module.

High-precision Integer Quantization: Directly performing
vanilla integer quantization [16], [17] causes dramatic accu-
racy loss in kernel-space. For example, we have a NN for CC,
and its output is the portion α of the line rate as target sending
rate, thus, α ∈ [0, 1]. After we perform integer quantization,
α ∈ {0, 1}, which causes the target sending rate to be either
0 or line rate, leading to dramatic performance degradation.
In order to prevent such accuracy loss, LiteFlow performs an
input/output scaling before quantization. In the above case,
we will add a scale-up layer after the original output layer,
thus, the output becomes α′ = α × C, where C denotes
the scaling factor and is usually a large integer, e.g., 1000.
As a result, α′ ∈ {0, 1, . . . , 1000}, thus the sending rate is
⌊α′×line rate

C ⌋, which does not lose much accuracy. Figure 7
shows the statistics of accuracy loss caused by LiteFlow’s
quantization towards different NNs. We observe that by using
proper scaling, e.g., 1000 × scaling, LiteFlow’s quantization
loses 2% accuracy on average.

Automatic Layer-wise Code Translation: The idea is based
on the observation that NNs are usually composed of repetitive
and enumerative building blocks – layers. Therefore, LiteFlow
can maintain kernel-space implementations of each type of
layer, i.e., layer template. Listing 1 shows the template of
kernel-space implementation of a fully connected layer. The
template contains only computation logic but leaves all data
as placeholders.

LiteFlow further scans the quantized NN to extract the
parameters and synthesize them with a certain template.

Listing 1. Template of fully connected layers (We use Python Jinja [41] as
the template engine).

Listing 2. Synthesized kernel-space implementation of a particular fully
connected layer.

Listing 2 shows the synthesized kernel-space implementation
of a fully connected layer. Next, LiteFlow combines the
implementations of all layers into a complete source code
file. Eventually, LiteFlow invokes GCC [42] to compile the
code into a kernel module, which can be installed in the
kernel-space. However, some layers are difficult to be con-
verted into kernel-space compatible and optimized ones. For
example, these layers use functions that are not supported
in the kernel-space, such as tanh activation function. For
these layers, LiteFlow uses lookup table to approximate these
functions with high precision and low computation complexity.
Compared to function-based approximation methods, i.e. using
Taylor Series [43] to convert the function into a polyno-
mial, LiteFlow’s design of lookup table has the following
two advantages: (1) it can ensure persistent high-precision
approximation while function-based approximation methods
are accurate only within a certain range, (2) it has a constant
computation complexity, which is preferred in the kernel data-
path. In contrast, function-based approximation solution has an
increasing computation complexity when using higher-degree
Taylor Series for higher accuracy.

B. Online Adaptation
To learn and adapt to the network dynamics, LiteFlow

further enables online adaptation for the NN in the slow path.
To achieve it, LiteFlow has to deliver the training data from
kernel-space to userspace, e.g., congestion signals, flow status,
etc. If we perform such data exchange once we receive new
data (receive a new packet), similar to the problem in §II-B,
the cross-space communication compromises the performance
gain achieved by adaptive NNs.

To design a low-overhead online adaptation mechanism,
we observe that for datapath functions, the environment char-
acteristics, such as traffic patterns and flow size distributions,
etc, usually do not change at sub-second timescales [19],
[44]. Thus, NN tuning in a batch mode is sufficient. Based
on this observation, LiteFlow accumulates the training data
in the kernel-space as a batch and delivers the batched data
to userspace for tuning the NN in the slow path every T
time. Moreover, the batch data delivery interval decides the
performance of LiteFlow. A small interval leads to dramatic
overhead caused by frequent cross-space communication (sim-
ilar to the problem discussed in §II-B) while a large interval

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 633

Fig 8. Before Aurora’s online adaptation finishes exploration, the perfor-
mance of Aurora is unstable and sub-optimal.

degrades NN’s ability to learn the environmental changes.
Micro-benchmark experiment results in §V-A recommend to
set the interval T between 100ms and 1000ms. In our imple-
mentation, we set T = 100ms.

Is the Batched-mode Suitable for Optimizing Datapath
Functions? Although the batch-mode used by LiteFlow cannot
continuously tune the NN, we show through experiments that
NN tuning with batched data is more suitable for kernel
datapath functions because online adaptation does not con-
tinuously lead to better functional performance. As a result,
we do not need to update the NN snapshot in an online
manner but should design a mechanism to update the NN at
the right time (§III-C). Figure 8 shows the online adaptation
progress of Aurora and we can observe that Aurora takes
∼ 800 iterations (receiving around 800 packets) to perform
thorough explorations. We also generate different snapshot
NNs every 100 iteration and measure the average goodput
if we deploy these snapshots in the fast path. The goodput
is shown on the right Y-axis. From the experiment results,
we find that only when the online adaptation finishes the
exploration, the NN in datapath can achieve ideal performance.

Worth mentioning, NN tuning via reinforcement learning is
usually performed with a simulator in userspace, Thus, in this
case, both online and batched modes should yield identical
training efficiency because we can emulate the online mode
by feeding the batched data sequentially into the simulator.

C. NN Synchronization Evaluation
After model tuning, LiteFlow evaluates whether it should

update the NN snapshot with the tuned NN from correctness
and necessity perspectives.

Correctness: As discussed in §III-B, the online adapta-
tion takes time to converge to optimal performance. Thus,
we will perform NN synchronization until the online adapta-
tion finishes exploration to deploy the correct snapshot in the
datapath, i.e., the one with optimal performance instead of an
unstable one. LiteFlow achieves it by continuously observing
user-defined metrics, e.g., training loss value, to determine
if the exploration converges. Note that LiteFlow users can
flexibly choose their metrics in LiteFlow (more details in §IV)
and we use training loss as the metric as it works well in our
implementation.

Necessity: Since updating the NN snapshot influences
the datapath function performance (more details in §III-D),
we should conservatively update the snapshot only when it’s
necessary. To evaluate such necessity, we introduce the defini-
tion of fidelity loss. Let f denotes the NN in the userspace, and
f ′ denotes the NN snapshot. Given the input data x. We have
fidelity loss L(x) defined as:

L(x) = |f ′(x)− f(x)| (1)

Similar to previous work [45], our fidelity loss evaluation
is based on the assumption that data characteristics in the
past (used for training) are similar to the upcoming ones (used
for inference). Furthermore, as discussed in §III-B, LiteFlow
delivers training data to the userspace in a batch mode to
reduce the cross-space communication overhead. We will
calculate the fidelity loss over every x ∈ X to obtain the
minimal L(x), where X denotes the set of all data in one
batch. It is necessary to update the NN snapshot only when
the minimal fidelity loss exceeds a user-defined threshold, i.e.,
the difference between the two NNs is large enough. Here,
we use the minimal fidelity loss as the necessity metric to make
the NN snapshot synchronization as conservative as possible
to minimize the performance interference caused by snapshot
updates. For the threshold, we set it as α× (Omax −Omin),
where Omax is the maximum output value of the NN and
Omin is the minimum. For example, in Aurora, Omax is 1 and
Omin is 0. For α, we empirically set it to be %5, which
delivers good performance in our experiments.

D. NN Snapshot Update
As discussed above, deploying a NN snapshot in the

kernel-space causes potential performance interference for
datapath functions. The key reason is the existence of locks,
which causes dramatic waiting time if the locking mechanism
is not properly designed.

Specifically, when updating the NN snapshot, LiteFlow has
to leverage a kernel lock (usually a spin lock) to temporally
prevent the NN snapshot from being used by other functions’
control flows. The direct approach follows 3 steps: (1) acquir-
ing a spin lock; (2) deploying a new NN snapshot in the
kernel-space; (3) releasing the lock. Such an approach has
a critical performance issue: the locking time is significant
because NN update requires transferring large data, e.g., model
parameters, from userspace to kernel-space. Consequently,
functions relying on the NN will wait for the lock, eventually
causing performance issues, e.g., TCP timeout.

To solve the problem, LiteFlow adopts an active-standby-
switch approach. Basically, LiteFlow maintains one NN
snapshot as active, another snapshot as standby. Only the active
snapshot is used for inference. Moreover, LiteFlow designs an
inference router to switch the role of the two snapshots by
forwarding the inference request to different snapshots. The
workflow is shown in Figure 9. First, as Figure 9a shows,
the inference request is sent to the inference router and then
forwarded to the active snapshot. When LiteFlow updates the
snapshot, as shown in Figure 9b, it generates and deploys a
new snapshot as the standby one instead of directly replacing
the active one. Although this process may take significant
time, the datapath function can still use the active snapshot
for inference, and no lock is acquired. Finally, as Figure 9c
demonstrates, after the standby snapshot is deployed, the
inference router can change the role of the two snapshots,
making the standby snapshot as the active one and forwarding
the inference requests to it. During this process, only a small
part of the code in the inference router acquires a lock (3 lines
of code to change a pointer in LiteFlow’s implementation),
causing a delay of only several nanoseconds.

Flow Consistency: While promising, the active-standby-
switch approach may cause flow inconsistency potentially.
Flow inconsistency refers to a problem that some packets of
one flow are served by an old NN snapshot while others are
served by a new snapshot. Under this circumstance, flows

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

634 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig 9. LiteFlow adopts active-standby-switch approach to mitigate the
performance impact of locks.

will suffer from performance vibration. Taking CC as an
example, a sudden change of flow sending rate may cause
queue overflow, leading to performance degradation. Thus,
to prevent flow inconsistency, we design a flow cache in the
inference router to ensure that packets of one flow will use
the same NN for inference.2

When a NN inference request comes, LiteFlow calculates
its flow ID and uses the flow ID as the key to look up
the flow cache. The flow cache is a kernel-space hash table
with flow ID as the key and pointer to a NN as the value.
If there is a cache hit, then we directly use the pointer to
find the NN for inference. If there is a cache miss, then
we go back to the inference router to use the active NN
for inference. Meanwhile, we move the pointer to the active
NN to the cache for future use. When a flow finishes, e.g.,
by receiving TCP FIN packet, we remove it from the cache.
We also set up a timeout mechanism to remove inactive
records. Each NN maintains a reference count starting from
0. The counter increases when we cache a NN’s pointer and
decreases up on removal of a pointer. A NN module can be
removed from the kernel-space only when the reference count
reaches 0.

E. Model Optimization

After introducing the core idea of LiteFlow, we now demon-
strate how to make an arbitrary NN suitable for LiteFlow.
Since a huge NN, e.g., NN with thousands of layers, involves
a large inference overhead, thus inevitably degrading the
datapath efficiency. To make these huge NNs suitable for
kernel datapath, we have to perform model optimization to
accurately reduce the inference overhead while still keeping
high NN fidelity. To achieve this goal, we will first set up
a cost model to establish a quantitive relationship between
NN complexity and datapath performance to guide our further
optimization. Then we will propose our structure pruning
algorithm to reduce the complexity of a NN to guarantee
specific datapath performance.

1) Cost Model: Similar to LiteFlow’s layer-wise code trans-
lation technology, we again utilize the layer structure of a NN
to evaluate the inference cost of a NN. Specifically, the cost
of the whole model is calculated by summing up all costs
of layers:C = Σl∈LCl and Cl denotes the cost of a particular
layer l. Similar to code template mentioned before, we provide
a cost function for each type of layer. For example, Equation 2

2LiteFlow users can easily disable flow cache for a particular datapath
function if it does not require flow consistency.

Fig 10. Linear relationship between throughput and computation cost.

calculates the cost of a convolution layer.

Cl = ⌈W −Wkernel + 1
p

⌉ ∗ ⌈H −Hkernel + 1
p

⌉

∗ Cin ∗Wkernel ∗Hkernel ∗ Cout (2)

The W and H denote the weight and height of the input
data. Wkernel and Hkernel denote the weight and height of
the kernel matrix. Cin and Cout denote the size of input and
output channel. p denotes the stride. We can set W = Wkernel,
H = Hkernel, p = 1, and Cin = 1 for a fully connected layer
where the Equation 2 becomes W ∗ H ∗ Cout, which equals
the size of the weight matrix.

After obtaining the cost C of the NN, we further construct
a relationship between computation cost C and datapath
efficiency. In our paper, we mainly use maximum throughput
of the datapath to demonstrate kernel-efficiency, but our design
is general to support other metrics, such as base latency.
Figure 10 shows the relationship. We can observe the through-
put thr and cost C follow a linear relationship and can be
modeled as thr = a×C +b, where a and b are server-specific
parameters related to hardware configuration. LiteFlow obtains
these parameters by performing several testing experiments
before going to production environment.

2) Structure Pruning: Why structure pruning? Kernel func-
tions are latency-critical and resource-sensitive, so the NN to
be deployed in the kernel must be of moderate size. There are
two approaches to generate such a NN: 1) directly training a
NN of moderate size or 2) training a deep NN and then pruning
it into a smaller one that can fit into the kernel efficiently.
We prefer the second approach as it is difficult to pre-decide
the size of final NN. In contrast, starting from a deep NN
means the model initially has sufficient modeling capacities.
As long as we do the NN pruning in a way that minimize the
loss of modeling capacity, we has a much better opportunity
to generate a NN that is kernel-efficient and in the meanwhile
has good performance. Our NN pruning algorithm is described
as below.

Algorithm. Our structure pruning algorithm has 2 parame-
ters: the maximum allowed fidelity loss E, and the minimal
datapath throughput T . LiteFlow calculates the maximum
allowed overhead Callowed from the T . LiteFlow’s goal is to
find a structure U to minimize fidelity loss ϵ (ϵ < E) while
satisfying the cost CU < Callowed.

LiteFlow’s algorithm leverages existing structure prun-
ing algorithm: net-trim [45], which adopts a layer-wise
approach to prune the structure, as shown below:

min
U
||U ||1 s.t. ||σ(UT Y ℓ−1 − Y ℓ)||F < ϵ/ℓ (3)

For ℓ-th layer, net-trim tries to find a most sparse weight
matrix U , that guarantees the result of original layer output Y ℓ

minus the new output (calculated by multiplying new weight

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 635

Algorithm 1 Structure Pruning
Input : Model U , maximum fidelity loss E,

maximum cost C
Output: Pruned model structure U ′

1 fn StructurePruning(U , E, C)
2 ϵ← E
3 U ′ ← net-trim (U, ϵ)

// leveraging existing algorithm
to find minimal U that satisfies ϵ

4 if cost-model (U ′) > C then
5 return null
6 else
7 U ′′ ← StructurePruning(U , E/2, C)
8 if U ′′ == null then
9 return U ′

10 else
11 return U ′′

12 end
13 end

matrix U with original input Y ℓ−1) is less than ϵ/ℓ. The ||U ||n
denotes the n-norms of the matrix U and the σ denotes the
activation function.

Different from the original net-trim algorithm to find
a most sparse i.e. lowest overhead structure under the fidelity
bound, LiteFlow in turn tries to minimize the fidelity loss while
still keeping the NN kernel-efficient. Since in kernel datapath,
we does not need to find the most efficient NN but to achieve a
balance between modeling capacity and efficiency. Therefore,
LiteFlow’s structure pruning algorithm is more practical than
original net-trim algorithm. Based on this idea, LiteFlow
leverages existing structure pruning algorithm and adopts an
iterative search algorithm to search the optimal results as
demonstrated in Algorithm 1.

IV. IMPLEMENTATION

We provide a hybrid implementation of LiteFlow, which
contains both userspace and kernel-space implementations.

A. Userspace Implementation
The userspace implementation of LiteFlow provides a set of

Python interfaces for users to implement. It further provides a
service to accept a user-defined Python class that implements
those interfaces. By allowing users to implement the interfaces,
LiteFlow is not tightly coupled with any deep learning or
reinforcement learning frameworks, therefore, LiteFlow users
can use their preferred frameworks to optimize the NNs. More-
over, by providing these standard APIs, LiteFlow can flexibly
support new NN-based algorithms (additional implementation
efforts may be needed for a new input collector & output
enforcer module and we will discuss it later). Specifically,
these interfaces are:
• NN Freezing Interface: The interface is used by Lite-

Flow to generate the NN snapshot (§III-A). To implement
the interface, users should save the model and return the
path to the saved model.

• NN Evaluation Interface: This interface is used to
evaluate the NN synchronization (§III-C). The inter-
face requires LiteFlow users to realize two functions:

(1) returning the stability value, e.g., training loss. Lite-
Flow monitors the value for some time to determine if
the online adaptation converges, i.e., the value changes
in a small range; (2) calculating the output of the
userspace-deployed NN when given a set of input data.
LiteFlow’s userspace service further communicates with
the LiteFlow kernel-space module (more details in the
next section) to calculate the fidelity loss of the NN
snapshot.

• NN Online Adaptation Interface: This interface is
used to enable online adaptation for NNs in the slow
path (§III-B). To implement the interface, LiteFlow users
have to include the scripts/programs to tune the NNs.
As discussed above, users can leverage any deep learning
frameworks, e.g., TensorFlow [6], or reinforcement learn-
ing utilities, e.g., GYM [7], to implement model tuning
logics.

After receiving the user-defined Python class, LiteFlow’s
userspace service first invokes the NN Freezing Interface to
obtain a saved NN. Then LiteFlow further leverages Tensor-
Flow Lite [6] to quantize the NN, and generates the snapshot
to be deployed in the kernel-space fast path. Worth mention-
ing, LiteFlow also uses TensorFlow Lite to perform model
optimization if necessary. Second, it fetches data from the
kernel-space in a batch mode via netlink and invokes NN
Online Adaptation Interface to tune the userspace-deployed
NN. After each training batch, LiteFlow further invokes the
NN Evaluation Interface to determine if the snapshot needs
updating based on both the correctness and necessity metrics.

B. Kernel-Space Implementation
LiteFlow is implemented with Linux kernel v4.15.0. As one

of LiteFlow’s design goals is to be generic to support adaptive
NNs for various datapath functions, we follow the modulariza-
tion principle to design LiteFlow’s kernel-space components.
Figure 11 shows how LiteFlow is divided into different
modules and we will introduce each module in the following
sections.

LiteFlow Core Module: This module realizes 4 major func-
tions. The first function is LiteFlow’s core logic, including NN
evaluation and updating logics discussed in §III-C and §III-D.
Second, it implements a NN manager. The NN manager uses a
linked list to manipulate all installed NN snapshots. It provides
lf_register_model API to install new snapshots. The
third function is to implement the collector & enforcer man-
ager to integrate NNs with different datapath functions (will
be introduced later). Finally, LiteFlow core module provides
a unified inference interface lf_query_model for other
kernel-space modules to use the NN. Table I summaries the
APIs provided by the LiteFlow core module.

LiteFlow Netlink Server Module: This module is regis-
tered with kernel-space netlink subsystem to communicate
with the LiteFlow userspace service. Two types of mes-
sages are transferred through this netlink channel: (1) the
newly-collected data for online adaptation, and (2) the output
of the NN snapshot when given a set of input data for necessity
evaluation.

NN Module: Each NN snapshot is a separate kernel mod-
ule. As discussed in §III-A, LiteFlow generates kernel-space
implementation of the snapshot and invokes GCC to com-
pile it into a kernel module (.ko file). LiteFlow userspace
service invokes insmod system call to install the module.
In the initial function of the module, we have to invoke the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

636 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig 11. The principle of LiteFlow’s kernel-space implementation is
modularization.

TABLE I
API OF LITEFLOW CORE MODULE

lf_register_model to register the NN with the LiteFlow
core module. During the registration, we need to tell LiteFlow
the input and output size of the NN. Worth mentioning, all
code of this module is automatically generated by LiteFlow.

Input Collector & Output Enforcer: To support various
datapath functions, LiteFlow should give the flexibility to
integrate adaptive NNs with different datapath functions.
Therefore, LiteFlow requires users to implement their own
data collection (e.g., collecting ECN bytes, TCP status, etc)
and output enforcement logics (e.g., setting the congestion
window, flow priority, etc, based on the output of the NN)
in kernel datapath. Users can use lf_register_io and
lf_unregister_io APIs to dynamically add or remove
data collection and output enforcement modules. Furthermore,
the API will check whether the required input and output size
of NN in these user-defined modules are consistent with the
installed NN. In this paper, we have implemented three such
modules:
• LiteFlow Congestion Control Module: The module is

plugged into the Linux kernel networking stack as a
customized CC algorithm. Each time it receives an ACK,
the module collects congestion signals, such as average
throughput, etc, and uses a NN to predict the target
sending rate. To enforce the sending rate in the data-
path, the module performs flow pacing by setting the
sk_pacing_rate property.

• LiteFlow Flow Scheduling Module: The module is
plugged into the Linux netfilter subsystem to modify the
outbound traffic. It collects metrics such as flow gap, flow
start time, etc, and uses a NN for flow size prediction.
It further tags priority to packets based on the prediction
results [46].

• LiteFlow Path Selection Module: The module is inte-
grated with XPath [47] for explicit path control. It collects

congestion signals, such as ECN bytes, smoothed RTT,
etc, and uses a NN for path selection. It further leverages
explicit path control to enforce path selection.

Next, we discuss how LiteFlow can support new NN-based
algorithms. On one hand, LiteFlow has already provided the
above 3 modules, which offer some commonly-used features.
For example, for CC, LiteFlow Congestion Control Module
can collect signals including average throughput, average
latency, and latency gradient, which are used by existing
works [1], [2]. The module further collects ACKed bytes,
ECN bytes, and other CC metrics for future use. If the input
features required by the new NN-based algorithms are already
provided by our modules, LiteFlow users can directly use these
modules. On the other hand, if LiteFlow users need features
beyond our modules or they aim to optimize new datapath
functions, e.g., queue discipline, they need to develop their
own input collector & output enforcer modules. Specifically,
they have to build a new kernel module, in which they collect
their required features as a vector and then use LiteFlow’s
API lf_query_model for inference. Meanwhile, they have
to implement the logic to enforce the output of the inference
to the datapath as well. However, developing a new input
collector & output enforcer requires extensive domain knowl-
edge and involves complex kernel-space programming, which
remains a challenge for LiteFlow.

V. LITEFLOW APPLICATIONS

To showcase LiteFlow can enable high-performance adap-
tive NNs for kernel datapath, we use it to optimize 3 popular
datapath functions with 4 different NNs and evaluate their
performance. Please note that we mainly compare LiteFlow
with prior works [1], [2], [9], [19] which all adopt userspace
NN deployment. We do not compare LiteFlow with pure
kernel-space NN deployment due to the significant perfor-
mance degradation as discussed in §II-C, which makes it an
impractical solution.

A. LiteFlow for Congestion Control
Congestion control (CC) is among the most important net-

work functions. The CC function collects congestion signals,
such as RTT, ECN bytes, etc, as the input of the NN, and
performs NN inference to obtain the output of the NN — the
sending rate of the flow. The sending rate will be further
enforced to control the speed of the flow to mitigate network
congestion. Moreover, the NN can continuously learn and
adapt to the network dynamics to tune itself for better CC
in the future. The evaluated NNs are as follows:
• Aurora: Aurora uses a reinforcement learning algorithm

and builds a NN with two hidden fully-connected layers
with 32 and 16 neutrons respectively [1]. Aurora extends
GYM [7] to build a Python-based networking simulator
for NN training and online adaptation. We use Aurora’s
original code for evaluation [48].

• MOCC: MOCC uses multi-objective reinforcement
learning and builds a NN with two hidden fully-connected
layers with 64 and 32 neutrons respectively [2].
It improves Aurora’s design to adding the multi-objective
feature, which shows better performance over Aurora.

We use LiteFlow to enable both Aurora (LF-Aurora) and
MOCC (LF-MOCC) in kernel datapath, and also use LiteFlow
Congestion Control Module introduced in §IV to integrate the
NNs with the kernel datapath. We use the testbed from §II-B.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 637

Fig 12. [Congestion Control] Compared to userspace-deployed NNs,
LF-Aurora and LF-MOCC can achieve better and more stable flow goodput.

Schemes Compared: We mainly compare LF-Aurora and
LF-MOCC with (1) pure userspace deployment of these
NNs and (2) traditional CC algorithms in the kernel-space.
For pure userspace deployment, we use Congestion Control
Plane (CCP) [9] to deploy the NNs, i.e., CCP-Aurora, and
CCP-MOCC. CCP requires frequent cross-space communica-
tion, and in our evaluation, we vary the communication interval
from per-ACK to per-100ms. For traditional CC algorithms in
the kernel-space, we choose CUBIC [49] and BBR [5] for
evaluation.

Congestion Control Performance: In this experiment,
we mainly evaluate the performance of congestion control,
i.e., how well can LiteFlow handle network congestion using
these NNs? Note that we mainly compare different deployment
mechanisms of the same NN-based model instead of com-
paring different NN-based algorithms and traditional heuristic
algorithms. The testbed setting is similar as §II-B, where we
use netem to set the RTT to be 10ms. In this experiment,
we also set the receiver link to 1Gbps (via switch configu-
ration) and generate background UDP traffic (constant rate
at 0.1Gbps) to emulate congestion. Then, in each setting,
we launch one flow controlled by different schemes and
measure its goodput. The results are shown in Figure 12 and
the error bar indicates the standard deviation.

We make the following observations. First, flows controlled
by LF-Aurora and LF-MOCC achieve higher goodput than
those controlled by CCP-Aurora and CCP-MOCC. LF-Aurora
and LF-MOCC achieve comparable results to CCP-Aurora-
ACK and CCP-MOCC-ACK (we will show in Figure 14
that small intervals cause large overhead) and largely out-
performs CCP-Aurora-100ms and CCP-MOCC-100ms by
up to 44.4% (from 845.12Mbps to 585.17Mbps) and
26.6% (from 851.16Mbps to 672.12Mbps) respectively.
Second, the standard deviation of goodput achieved by
LF-Aurora and LF-MOCC is much smaller than CCP-Aurora
and CCP-MOCC with large communication intervals. The
experiment results show that by eliminating the cross-space
communication, LiteFlow makes the NNs more responsive,
thus leading to better and more stable performance than
userspace-deployed NNs.

Online Adaptation: In this experiment, we mainly evaluate
how LiteFlow with these NNs can adapt to environmental
dynamics. We use a similar setting as in §II-C. We also
disable the NN adaptation function of LiteFlow for comparison
(LF-Aurora-N-O-A). Figure 13 shows the results.

Compared to LF-Aurora-N-O-A, which suffers a dramatic
goodput drop when the environment changes, LF-Aurora
and LF-MOCC can learn and adapt to such dynamics, thus
achieving significantly better goodput, which is similar to
that achieved by CCP-Aurora-ACK (we will show that small

Fig 13. [Congestion Control] LF-Aurora and LF-MOCC can learn and adapt
to the environmental dynamics.

Fig 14. [Congestion Control] LF-Aurora and LF-MOCC suffer from much
lower overhead than CCP-Aurora and CCP-MOCC, and achieves comparable
overhead as pure kernel-space implementations.

intervals cause large overhead later). Furthermore, LF-MOCC
achieves a faster adaptation speed (less than 10 minutes) than
LF-Aurora (around 13 minutes), which shows a similar trend
as that in the MOCC paper [2].

The experiment results show that by enabling online adap-
tation, even with batched data, LiteFlow allows the NNs to
efficiently learn and adapt to the environmental dynamics.

Overhead: We launch N concurrent flows in one experiment
in a non-congested environment (N = 2, 4, 6, 8, 10). In dif-
ferent experiments, flows are controlled by different schemes.
We measure the aggregated throughput of the network to
denote the overhead caused by these NNs. As a baseline,
we also launch flows controlled by BBR and CUBIC respec-
tively, both implemented in the kernel-space. Figure 14 shows
the results, and all results are normalized to the aggregated
throughput achieved by BBR. Here we use normalized values
to highlight the throughput loss.

We have two observations. First, LF-Aurora and LF-MOCC
achieve comparable performance to kernel BBR (the perfor-
mance loss is <5%) and outperform CUBIC by 17.5%. The
reason why those NN-based solutions can even outperform
CUBIC, a pure kernel implementation, is that these NNs
are actually less complicated than CUBIC in which the
complex CUBIC function needs to be calculated. Second,
LF-Aurora and LF-MOCC largely outperform CCP-Aurora
and CCP-MOCC by up to 63.5%. These experimental results
show that by eliminating the overhead caused by cross-space
communication, LiteFlow with NNs can achieve comparable
performance to pure kernel-space implementations.

Batch Data Delivery Interval: To understand how the batch
data delivery interval T affects the performance of Lite-
Flow, we further perform a micro-benchmark experiment with
LF-Aurora. We choose different parameters and measure (1)
the overhead of LiteFlow using mpstat when launching
10 concurrent flows (similar to §II-B) and (2) the average
goodput of a single flow (the setting is similar to the pre-
vious online adaptation experiment). The result is shown in
Figure 15.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

638 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Fig 15. [Congestion Control] Micro-benchmark experiment of how batch
data delivery interval affects the performance (N-O-A denotes no online
adaptation).

We observe that when the batch data delivery interval is
set between 100ms and 1000ms, the overhead, i.e., the soft-
ware interrupt time over total CPU execution time, is within
∼ 14.1%, achieving similar results as pure kernel CC imple-
mentation (∼ 12.6%). Furthermore, the goodput of a flow is
not compromised. This experiment confirms that with a proper
batch data delivery interval, LiteFlow can reduce the overhead
caused by existing userspace NN deployment mechanisms
without compromising the NN performance.

High Throughput & Low Latency: Please note that all the
above 4 experiments are performed in a network configura-
tion with ∼10ms RTT. Readers may wonder how LiteFlow
performs in high throughput & low latency environments,
such as DCN. In this experiment, we stop using netem
for extra latency which creates a high throughput & low
latency setting. We have tried to tune Aurora to fit in this
setting, but unfortunately, we fail to make Aurora achieve
high throughput. Therefore, we create a dummy case, where
the NN has the same structure as Aurora but always sets the
sending rate to the line rate by modifying the code generated
by LiteFlow (LF-Dummy-NN). We launch N concurrent flows
in one experiment in a non-congested environment (N = 2,
4, 6) and measure the aggregated throughput. Due to space
limitation, we omit the detail results and only present the
summary: LF-Dummy-NN can achieve as high throughput as
pure kernel-space BBR, where the performance degradation is
within 5%.

B. LiteFlow for Flow Scheduling
Flow scheduling is employed to complete flows quickly

and/or to meet deadlines [50]. Most flow scheduling algo-
rithms assume the flow size is known, while it is not
practical in most cases [51]. Recently, people begin to use
learning-based solutions to predict the flow size to achieve
better flow scheduling [19]. We choose one of such solutions
to evaluate how LiteFlow can improve flow scheduling.

FFNN: FFNN is a feed-forward neural network used to
predict flow size in FLUX [19]. FFNN has 2 hidden layers
with a ReLU activation function. Each hidden layer has
5 neutrons. We use LiteFlow to enable FFNN (LF-FFNN)
in kernel datapath, and also use LiteFlow Flow Scheduling
Module introduced in §IV to integrate the NN with the kernel
datapath.

Schemes Compared: We mainly compare LF-FFNN with
pure userspace inference solutions. We deploy FFNN with
TensorFlow [6] in userspace and implements a cross-space
communication method to pass the predicted priority to the
kernel-space and use a kernel module similar to LiteFlow flow
scheduling module to tag priority. The kernel module also
collects metrics needed by the FFNN and sends it back to
the userspace deployed NN for inference.

Fig 16. [Flow Scheduling] LF-FFNN can achieve the lowerest end-to-end
latency when predicating flow size.

Fig 17. [Flow Scheduling] LF-FFNN can largely outperform other schemes
due to its fast predication speed and online adaptation capability.

To make the comparison comprehensive, we implement the
communication in two different ways: one is to use char
device (char-FFNN), the other is to use netlink (netlink-
FFNN). We also disable the online adaptation for LF-FFNN
for evaluation (LF-FFNN-N-O-A).

Experiment Settings & Methodology: As flow scheduling
usually needs large-scale testbed with advanced switch hard-
ware, we use both testbed and simulator-based experiments
in this section. We first measure the prediction latency of
LF-FFNN, char-FFNN, and netlink-FFNN on our testbed.
Second, we encode the inference latency in our simulator.
For LF-FFNN, we use ns3-gym [52], [53] to further allow
NN to adapt to the changing environment. The simulated
topology is a 2×2 spine-leaf topology with 32 servers. We use
DCTCP [54] as our CC algorithm. The workload we use is
also from the DCTCP paper.

Predication Latency: First, we measure the prediction
latency of the three mechanisms on our testbed, and Figure 16
shows the CDF of measured latency. The average inference
latency of LF-FFNN is around 2.19µs, which is 49.5% smaller
than char-FFNN (4.34µs) and 73.6% smaller than netlink-
FFNN (8.09µs). Moreover, the prediction latency of LF-FFNN
is more stable than userspace deployed NN. The results
demonstrate that LiteFlow can largely reduce the predica-
tion latency by eliminating the cross-space communication.
We will show subsequently that the fast inference can eventu-
ally result in better flow completion time (FCT).

Flow Completion Time: We further evaluate how LiteFlow
with FFNN performs in large-scale networks through simu-
lated experiments. In this experiment, we launch ∼ 4000 flows
and measure their FCT. The results are shown in Figure 17 (the
Y-axis is in log scale). We further break the results into FCT
of short flows (<10KB), middle flows (10-100KB), and long
flows (>10KB).

We mainly make two observations. First, LF-FFNN can
largely outperform the other two userspace-deployed solutions
in all cases. Particular, LF-FFNN outperforms char-FFNN
by 10.9% for short flows (377µs vs 423µs) and 33.7% for
long flows (60232µs vs 90823µs). The results show that by
reducing the prediction latency, LiteFlow can benefit flow

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 639

Fig 18. [Load Balancing] LF-MLP can outperform other schemes in
supporting load balancing function.

scheduling applications in a large-scale environment. Second,
LF-FFNN can outperform LF-FFNN-N-O-A by 6.0% for short
flows (377µs vs 401µs) and 23.0% for large flows (60232µs
vs 78201µs). The results further demonstrate that by enabling
online adaptation, LiteFlow is well suited for optimizing dat-
apath functions in a large-scale deployment full of dynamics.

C. LiteFlow for Load Balancing
Load balancing is critical for data centers with multiple

paths to deliver high throughput and low latency. Researchers
have started to leverage NNs at end hosts to intelligently and
adaptively select paths to optimize the traffic load among
all available paths [55], [56]. In this section, we design a
multi-layer perceptron model (MLP) for traffic load balancing
and evaluate it with LiteFlow to see how can LiteFlow improve
the NN-based load balancing function.

MLP: MLP model has 2 hidden layers with a ReLU
activation function, and each layer has 12 neutrons. We use
supervised learning to optimize the MLP model and the model
is optimized for better flow completion time.

We develop and train the MLP model with TensorFlow [6].
We use LiteFlow to enable MLP (LF-MLP) in kernel datapath,
and also use LiteFlow Path Selection Module introduced in
§IV to integrate the NN with the kernel datapath.

Schemes Compared: Similarly, we design a userspace
deployment of MLP model via char device (char-MLP) as
§V-B. Furthermore, we also disable the online adaptation fea-
ture of LiteFlow for comparison (LF-MLP-N-O-A). We also
use ECMP [57] as a baseline.

Experiment Settings: We use a 2 × 2 spine-leaf topology
with 8 servers. We use DCTCP [54] as our CC algorithm.
We also use the web search traffic workload mentioned in the
DCTCP paper for evaluation.

Experiment Results: We mainly measure the FCT of differ-
ent schemes and the results are shown in Figure 18 (the Y-axis
is in log scale). Similarly, we also break the results into FCT
of short flows, middle flows, and long flows.

We make the following three observations. First,
LF-MLP can largely outperform other schemes. It outperforms
userspace-deployed MLP, i.e., char-MLP, by 34.3% (278µs
vs 423µs) on short flows and 56.7% (12922µs vs 29812µs)
on long flows. Second, to our surprise, char-MLP even
performs worse than the naive load balancing scheme,
ECMP. We believe the reason is that char-MLP suffers
from increasingly large overhead caused by cross-space
communication which leads to severe datapath performance
degradation. Third, LF-MLP can perform better than
LF-MLP-N-O-A, which again confirms that it is crucial for
NNs to learn and adapt to the environment to deliver superb
performance in the networking context.

VI. DEEP-DIVE

A. Model Optimization
In this section, we extend the Aurora and FFNN models

used in previous sections to make them have more parameters.
Specifically, the original Aurora model contains two hidden FC
layers with 32 and 16 neutrons respectively (Aurora-32× 16)
and we extend it with a 160 × 80 (Aurora-160 × 80) and
320 × 160 (Aurora-320 × 160) structure. We also extend the
FC layer of the FFNN to contain 50 (FFNN-50) and 100
(FFNN-100) neutrons respectively while the original FFNN
contains one hidden FC layer with 5 neutrons (FFNN-5).
Then we will evaluate how LiteFlow’s model optimization
mechanism improves the overall performance when deploying
these huge models.

As Table II shows, LiteFlow’s structure pruning algorithm
also preserves high fidelity. When LiteFlow prunes Aurora,
it causes the most fidelity loss, reaching around 4%. When
the original net-trim paper reports that we can usually prune
a model by up to 95%, LiteFlow does not prune that
much, e.g., LiteFlow prunes 34.5% for Aurora. The reason is
that LiteFlow adopts an iterative search algorithm (§III-E.2)
to minimize the fidelity loss while still achieving kernel-
efficiency. We then use iPerf to launch one single TCP flow
from one server to another server and measure the throughput.
The results are shown in Table II. We also measure the
throughput of BBR with no flow scheduling policy and obtain
13.2Gbps as the baseline.

In general, throughput decreases when the size of the
deployed NN model becomes larger, e.g., compared to the
original Aurora, throughput of Aurora-320 × 160 decreases
28.4% (from 13.1 to 9.38Gbps). Then we use LiteFlow
to prune a large NN, the datapath can reach comparable
throughput as BBR, a pure kernel CC implementation (BBR:
13.2Gbps, Aurora: 13.1Gbps, FFNN: 13.2Gbps, pruned
Aurora-320 × 160: 13.1Gbps, pruned FFNN-100: 13.0Gbps).
The results indicate that by performing model optimization,
LiteFlow could improve datapath efficiency while not losing
too much fidelity.

B. NN Snapshot Generation & Deployment Time
We artificially generate random NNs with different numbers

of parameters. Then we measure the time of using LiteFlow
to generate and deploy the NN snapshot. We further break
the time down into: (1) quantization time, (2) code generation
time, (3) code compiling time, and (4) kernel module installa-
tion time. Figure 19 shows the results and we have following
four observations:

1. The overall time increases when the NN has more param-
eters, and LiteFlow needs ∼ 15s to generate the snapshot
and complete deployment for a NN with > 6000 param-
eters. Taking real-world NN, Aurora, for example, which
has 1537 parameters, LiteFlow needs only ∼ 7s to
generate and deploy the snapshot in datapath. Compared
to the time needed for the online adaptation discussed in
§III-B, the short NN snapshot generation & deployment
time indicates that LiteFlow can well satisfy the needs of
NN evolution.

2. The kernel module installation time is very small (< 1%)
and can be ignored.

3. The time taken in quantization and code generation
preserves stable even when the number of parameters
increases. Please note, these 2 parts are the core design

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

640 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

TABLE II
[DEEP-DIVE] LITEFLOW’S MODEL OPTIMIZATION MECHANISM

Fig 19. [Deep-dive] NN Snapshot Generation & Deployment Time.

Fig 20. [Deep-dive] CPU Utilization.

of LiteFlow’s NN snapshot generation, showing that
LiteFlow is able to support even larger NNs with millions
of parameters.

4. The code compiling time increases when the number
of parameters increases because of increasing size of
the generated code. The compiling time can be further
reduced by involving parallel compiling, which is one of
our future work.

C. CPU Utilization
We measure the CPU utilization of serving N long-lived

flows after we deploy LF-FFNN (§V-B) in the kernel-space.
In this experiment, we pick N=10 and 20. As a baseline,
we also measure the CPU utilization without any NN in
the kernel-space. Figure 20 shows the results (normalized to
baseline). We observe that although more concurrent flows
lead to higher CPU utilization, the CPU utilization is within
10%. The results demonstrate that LiteFlow’s implementation
is efficient and consumes reasonable CPU resources.

VII. DISCUSSION

A. LiteFlow v.s. Orca
Orca [10] was proposed to combine the control of the

NN with the classic TCP control logic, thus leading to
the two-level control logic. One of the main reasons that
Orca adopts such a two-level method is that pure NN-based
solutions suffer from large deployment overhead, which is

the exact focus of LiteFlow. However, different from Orca,
LiteFlow takes an alternative solution by decoupling the
control path of the adaptive NNs into both kernel-space and
userspace to solve this problem. Compared to Orca, LiteFlow
gains the ability to optimize the CC in an end-to-end way,
which could eliminate the restrictions from the TCP control
logic, leading to better performance. Moreover, we believe that
by using LiteFlow, CC can largely benefit from the increasing
popularity of the NN-based algorithm development, such as
Spine [58].

B. Limitations of LiteFlow
In this paper, we mainly summarize the limitations of Lite-

Flow into two aspects. First, since LiteFlow relies on the Linux
kernel for implementation, LiteFlow cannot be integrated with
the kernel-bypass networking stacks, such as DPDK [59] and
RDMA [60]. We observe that these kernel-bypass networking
stacks also need a mechanism similar to LiteFlow because the
NN inference should be occurred in the fast path with limited
resources, such as the RDMA NIC, while the NN tuning can
be done in the slow path, such as software driver of RDMA.
Second, the current implementation of LiteFlow uses the Linux
kernel module, which restricts its flexibility (more details
in §IV-B). We can utilize some state-of-the-art Linux kernel
facilities, such as eBPF [61], for LiteFlow’s implementation
to enable easier and safer application integration.

VIII. RELATED WORKS

Userspace-deployed NNs: Recently, NNs have been exten-
sively used to optimize networking datapath functions since
they can learn and adapt to environmental variations, making
them ideal solutions in networking environment which is full
of dynamics. NNs have been used in CC [1], [2], [10], packet
classification [18], [62], packet forwarding & routing [3],
scheduling [4], [19], load balancing [55], [56], etc. Various
frameworks are designed to deploy these adaptive NNs in the
userspace [6], [20], [21], [63]. An easy way to integrate the
NNs with kernel-space datapath is using tools such as CCP [9].
However, these userspace-deployed adaptive NNs suffer from
performance degradation as discussed in §II-B.

Lightweight NNs for Inference: Converting a NN into a
lightweight one has been a mature technology to achieve
efficient NN inference. Specially, in the embedded system/
hardware accelerator context, integer quantization [16], [17],
[35] has been used to optimize NN inference on low-power
IoT devices [36], [37], FPGA [14], GPU [38], [39] and
SmartNICs [40]. Moreover, in the networking community,
NuevoMatch proposes to convert a NN into a C/C++-based
decision tree for efficient execution [18]. While we can lever-
age these lightweight NNs to deploy the NN in kernel-space

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: LiteFlow: TOWARD HIGH-PERFORMANCE ADAPTIVE NNs FOR KERNEL DATAPATH 641

for efficient inference, they cannot react to environmental
dynamics, thus causing suboptimal performance as discussed
in §II-C.

Kernel-space Deployment of both Model Training & Infer-
ence: KMLib [11] targets at building a complete NN training
and inference library directly in the kernel-space. However,
to support these functions, it has to sacrifices NN accuracy
by utilizing low-precision model training [64]. Furthermore,
using SIMD/FP instructions further degrades the performance
as discussed in §II-C. Worth-mentioning, although KMLib can
work in a decoupling mode which is similar to LiteFlow,
it does not explore the challenges behind such decoupling
design. Therefore, it is impractical to be deployed to optimize
kernel-space datapath functions.

Online Adaptation: Online adaptation, i.e., online machine
learning, presents a set of machine learning algorithms that can
optimize NNs over a stream of sequential data [65], [66], [67].
In the networking context, online adaptation is also widely
adopted [1], [3], [4], [19], [55], [56]. However, lack of an
efficient deployment mechanism leads to rare adoption of these
adaptive NNs in the production environment.

IX. CONCLUSION

This paper proposed LiteFlow, a hybrid solution to enable
high-performance adaptive NNs for kernel datapath functions.
Experiment results with 3 popular datapath functions have
demonstrated that LiteFlow is a viable solution for achieving
its design goals. The code of LiteFlow is publicly available
via https://github.com/snowzjx/liteflow.

ACKNOWLEDGMENT

The work was done when Shuihai Hu was at Clustar
Technology Co., Ltd.

REFERENCES

[1] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
Proc. ICML, 2019, pp. 3050–3059.

[2] Y. Ma et al., “Multi-objective congestion control,” in Proc. ACM
EuroSys, Mar. 2022, pp. 218–235.

[3] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “Learning to
route,” in Proc. ACM HotNets, 2017, pp. 185–191.

[4] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. ACM SIGCOMM, Aug. 2018, pp. 191–205.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
pp. 20–53, Oct. 2016.

[6] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX OSDI, 2016, pp. 265–283.

[7] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[8] Y. Gu and R. L. Grossman, “UDT: UDP-based data transfer for

high-speed wide area networks,” Comput. Netw., vol. 51, no. 7,
pp. 1777–1799, May 2007.

[9] A. Narayan et al., “Restructuring endpoint congestion control,” in Proc.
ACM SIGCOMM, Jul. 2018, pp. 30–43.

[10] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in Proc.
ACM SIGCOMM, Jul. 2020, pp. 632–647.

[11] I. U. Akgun, A. S. Aydin, and E. Zadok, “KMLIB: Towards machine
learning for operating systems,” in Proc. On-Device Intell. Workshop,
Co-Located MLSys Conf., 2020, pp. 1–6.

[12] (2020). Linux Kernel V4.1.5. [Online]. Available: https://lwn.net/
Articles/654091/

[13] P. J. Salzman, M. Burian, and O. Pomerantz, The Linux Kernel Module
Programming Guide. Scotts Valley, CA, USA: CreateSpace Independent
Publishing Platform, 2007.

[14] M. S. Abdelfattah et al., “DLA: Compiler and FPGA overlay for neural
network inference acceleration,” in Proc. IEEE FPL, Aug. 2018, p. 4117.

[15] K. Guo et al., “From model to FPGA: Software-hardware co-design
for efficient neural network acceleration,” in Proc. IEEE Hot Chips,
Aug. 2016, pp. 1–27.

[16] B. Jacob et al., “Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference,” in Proc. IEEE CVPR, Jun. 2018,
pp. 2704–2713.

[17] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” 2018, arXiv:1806.08342.

[18] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” in Proc. ACM SIGCOMM, Jul. 2020,
pp. 542–556.

[19] V. Ðukić, S. A. Jyothi, B. Karlaš, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in Proc.
USENIX NSDI, 2019, pp. 565–580.

[20] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. NeurIPS, 2019, pp. 1–12.

[21] T. Chen et al., “MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” 2015, arXiv:1512.01274.

[22] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. ACM SIGCOMM,
Aug. 2017, pp. 253–266.

[23] A. Langley et al., “The QUIC transport protocol: Design and internet-
scale deployment,” in Proc. ACM SIGCOMM, Aug. 2017, pp. 183–196.

[24] D. Firestone et al., “Azure accelerated networking: SmartNICs in the
public cloud,” in Proc. USENIX NSDI, 2018, pp. 51–66.

[25] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” in Proc. SoCC, Sep. 2017, pp. 506–519.

[26] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Müller, “BMC:
Accelerating memcached using safe in-kernel caching and pre-stack
processing,” in Proc. USENIX NSDI, 2021, pp. 487–501.

[27] J. Ousterhout, “A Linux kernel implementation of the Homa transport
protocol,” in Proc. USENIX ATC, 2021, pp. 99–115.

[28] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and A. Sivaraman,
“Synthesizing safe and efficient kernel extensions for packet processing,”
in Proc. ACM SIGCOMM, Aug. 2021, pp. 50–64.

[29] (2020). Mellanox SN2100 Switch. [Online]. Available: https://www.
mellanox.com/products/ethernet-switches/sn2000

[30] (2020). Netem. [Online]. Available: https://man7.org/linux/man-
pages/man8/tc-netem.8.html

[31] F. Y. Yan et al., “Pantheon: The training ground for internet congestion-
control research,” in Proc. USENIX ATC, 2018, pp. 731–743.

[32] (2020). Mpstat. [Online]. Available: https://man7.org/linux/man-
pages/man1/mpstat.1.html

[33] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, 2010, pp. 177–186.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[35] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021, arXiv:2103.13630.

[36] A. Kumar, V. Seshadri, and R. Sharma, “Shiftry: RNN inference in 2 KB
of RAM,” Proc. ACM Program. Lang., vol. 4, pp. 1–30, Nov. 2020.

[37] (2022). Neural Network Optimization With AIMET. [Online]. Available:
https://developer.qualcomm.com/blog/neural-network-optimization-
aimet

[38] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “µlayer: Low latency
on-device inference using cooperative single-layer acceleration and
processor-friendly quantization,” in Proc. EuroSys, 2019, pp. 1–15.

[39] S. Gupta, M. Imani, H. Kaur, and T. S. Rosing, “NNPIM: A processing
in-memory architecture for neural network acceleration,” IEEE Trans.
Comput., vol. 68, no. 9, pp. 1325–1337, Sep. 2019.

[40] G. Siracusano, D. Sanvito, S. Galea, and R. Bifulco, “Deep learning
inference on commodity network interface cards,” in Proc. NeurIPS,
2018, pp. 1–8.

[41] (2020). Python Jinja. [Online]. Available: https://jinja.palletsprojects.
com/en/3.0.x

[42] (2020). GCC, the GNU Compiler Collection. [Online]. Available:
https://gcc.gnu.org

[43] T. G. Goodwillie, “Calculus III: Taylor series,” Geometry Topol., vol. 7,
no. 2, pp. 645–711, Oct. 2003.

[44] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
ACM IMC, Nov. 2009, pp. 202–208.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

642 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

[45] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex
pruning of deep neural networks with performance guarantee,” in Proc.
NeurIPS, 2017, pp. 1–10.

[46] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM, Aug. 2013, pp. 435–446.

[47] S. Hu et al., “Explicit path control in commodity data centers: Design
and applications,” in Proc. USENIX NSDI, 2015, pp. 15–28.

[48] (2020). Aurora Codebase. [Online]. Available: https://github.
com/PCCproject/PCC-RL

[49] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5,
pp. 64–74, Jul. 2008.

[50] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows in
commodity datacenters with karuna,” in Proc. ACM SIGCOMM Conf.,
Aug. 2016, pp. 174–187.

[51] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. USENIX
NSDI, 2015, pp. 455–468.

[52] (2020). NS3-Gym. [Online]. Available:
https://www.nsnam.org/news/2018/
12/07/ns3-gym-app.html

[53] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in Proc. ACM CoNEXT, Dec. 2019, pp. 233–245.

[54] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., Aug. 2010, pp. 63–74.

[55] S. WilsonPrakash and P. Deepalakshmi, “Artificial neural network based
load balancing on software defined networking,” in Proc. INCOS,
Apr. 2019, pp. 1–4.

[56] H. Yao, X. Yuan, P. Zhang, J. Wang, C. Jiang, and M. Guizani,
“A machine learning approach of load balance routing to support
next-generation wireless networks,” in Proc. IWCMC, Jun. 2019,
pp. 1317–1322.

[57] C. Hopps et al., Analysis of an Equal-Cost Multi-Path Algorithm,
document RFC 2992, Nov. 2000.

[58] H. Tian, X. Liao, C. Zeng, J. Zhang, and K. Chen, “Spine: An efficient
DRL-based congestion control with ultra-low overhead,” in Proc. ACM
CoNEXT, Nov. 2022, pp. 261–275.

[59] (2023). DPDK. [Online]. Available: https://www.dpdk.org,
[60] C. Guo et al., “RDMA over commodity Ethernet at scale,” in Proc. ACM

SIGCOMM Conf., Aug. 2016, pp. 202–215.
[61] (2023). eBPF. [Online]. Available: https://ebpf.io
[62] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”

in Proc. ACM SIGCOMM, 2019, pp. 256–269.
[63] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica, “Clipper: A low-latency online prediction serving system,” in
Proc. USENIX NSDI, 2017, pp. 613–627.

[64] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[65] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. ICML, 2003, pp. 928–936.

[66] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[67] D. Sahoo, Q. Pham, J. Lu, and S. C. H. Hoi, “Online deep learning:
Learning deep neural networks on the fly,” in Proc. IJCAI, Jul. 2018,
pp. 2660–2666.

Junxue Zhang received the B.S. and M.S. degrees
from Southeast University and the Ph.D. degree
in computer science and engineering from the
iSING Laboratory, The Hong Kong University of
Science and Technology (HKUST), supervised by
Prof. Kai Chen. His research interests include data
center networking, machine learning systems, and
privacy-preserving computation. His research work
has been published in many top conferences, such as
SIGCOMM, NSDI, and CoNEXT.

Chaoliang Zeng received the B.S. degree from the
University of Science and Technology of China,
China, in 2018. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, The Hong Kong University of Sci-
ence and Technology, supervised by Prof. Kai Chen.
His research interests include datacenter systems
with a focus on hardware acceleration, high-speed
networking, and machine learning systems.

Hong Zhang received the Ph.D. degree in com-
puter science and engineering from The Hong Kong
University of Science and Technology (HKUST).
He is currently an Assistant Professor with the
David R. Cheriton School of Computer Science,
University of Waterloo. Previously, he was a
Post-Doctoral Scholar with UC Berkeley. His
research interests include computer systems and
networking, with a special focus on distributed data
analytics and ML systems, data center networking,
and serverless computing.

Shuihai Hu received the B.S. degree in computer
science from the University of Science and Tech-
nology of China (USTC), China, in 2013, and the
Ph.D. degree from the Department of Computer Sci-
ence and Engineering, The Hong Kong University
of Science and Technology, in 2019. He is cur-
rently a Researcher at Huawei. His research interests
include real-time media communication, datacenter
networks, and machine learning systems.

Kai Chen (Senior Member, IEEE) received the B.S.
and M.S. degrees from the University of Science and
Technology of China (USTC), China, in 2004 and
2007, respectively, and the Ph.D. degree from
Northwestern University in 2012. He is currently a
Professor with the Department of Computer Science
and Engineering, The Hong Kong University of
Science and Technology (HKUST), the Director of
the Intelligent System and Networking Laboratory
(iSING Lab) and WeChat-HKUST Joint Laboratory
for Artificial Intelligence Technology (WHAT Lab),

and the Executive Vice-President of the Hong Kong Society of Artificial
Intelligence and Robotics (HKSAIR). His work has been published in various
top venues, such as SIGCOMM, NSDI, and IEEE/ACM TRANSACTIONS ON
NETWORKING (TON), including a SIGCOMM Best Paper Candidate. His
current research interests include data center networking, machine learning
systems, and privacy-preserving computing. He is the Steering Committee
Co-Chair of APNet. He serves on Program Committees of SIGCOMM, NSDI,
and INFOCOM, and editorial boards of IEEE/ACM TRANSACTIONS ON
NETWORKING, Big Data, and Cloud Computing.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 01,2024 at 07:14:05 UTC from IEEE Xplore. Restrictions apply.

