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Multipath TCP
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Abstract—MPTCP provides the basic multipath support for
network applications to deliver high throughput and robust
communication. However, the original MPTCP is designed with
limited extensibility. Various research works have tried to extend
MPTCP to attain better performance or richer functionalities.
These existing approaches either modify the kernel implementa-
tion of MPTCP, which involve considerable engineering efforts
and may accidentally introduce safety issues, or control MPTCP
via userspace tools, which suffer from restricted functionality
support. To address this issue, we propose eMPTCP, an easy-
to-use framework to fully extend MPTCP without safety risks.
Internally, eMPTCP has a modular and pluggable model which
allows operators to specify a comprehensive MPTCP extension
as a chain of sub-policies. eMPTCP further enforces the policies
through packet header manipulations. To ensure safety, eMPTCP
is implemented using eBPF. Despite the stringent constraints of
eBPF, we show that it is possible to implement an elaborated
framework for a fully extensible MPTCP. Through verifying
MPTCP in a number of real-world cases and extensive experi-
ments, we show that eMPTCP is able to support a wide range of
MPTCP extensions, while the overhead of eMPTCP operations in
the kernel is in the scale of nanosecond, and the extra processing
time accounts for only about 0.63% of flows’ transmission time.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

Multipath transport has become a popular option in today’s
networks. Mobile devices usually have multiple wireless inter-
faces like Wi-Fi and cellular accesses [1], and it has become
a norm for multihoming servers to have many parallel paths
in data center networks [2]. In order to better exploit the mul-
tipath feature of networks, Multipath TCP (MPTCP) [3] was
proposed to enable applications to simultaneously utilize sev-
eral IP-addresses/interfaces for communication. With MPTCP,
applications are able to use multiple paths concurrently to
increase the aggregated capacity and to provide robustness
when there is any link failure.

Despite the promising benefits of using MPTCP, the diver-
sity of network traffic workloads and increasing performance
requirements of applications significantly complicate its usage.
To provide better performance or enhanced functionalities,
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there has been a wave of extensions over the native MPTCP,
covering a wide array of use cases, including traffic scheduler
[4]–[11], path management [12]–[17], and network-application
co-design [18]–[21], etc. For instance, as heterogeneous paths
may cause under-utilization of the fast path and the degrada-
tion of MPTCP performance, Zhang, et al, [11] extended the
traffic scheduler of MPTCP by developing an adaptive sched-
uler based on deep reinforcement learning. In order to improve
the performance for small flows, MMPTCP [13] extended the
standard MPTCP by modifying the path management module
to randomly scatter packets in the network so as to exploit
all available paths for small flows. Franck Le, et al. [19] co-
designed MPTCP with virtual machine (VM) migration to
increase the service reachability in a cloud environment.

However, the native MPTCP1 implementation is not de-
signed for easy extensibility. Existing methods of imple-
menting new extensions on the native MPTCP, including the
modifications of its kernel implementation or using a userspace
control module, have several undesirable drawbacks. First, to
correctly modify the native MPTCP kernel code usually takes
considerable amount of time and efforts, and the modification
may not be compatible with new MPTCP releases. Second,
by using a userspace control module (e.g., mptcpd [25]),
the functionality and extensibility are highly restricted to the
exposed interfaces, which is insufficient for many emerging
scenarios. Recently, Extended Berkeley Packet Filter (eBPF)
[26] emerges as a powerful technology to inject user-defined
programs into kernel space. Viet-Hoang Tran and Olivier
Bonaventure [27] have taken the first step toward extending
transport protocols with eBPF. Using eBPF to extend MPTCP
is a promising option, due to its safety guarantee, non-
intrusiveness to the kernel, and ease of deployment . However,
it remains an open question on how to use it to dynamically
tune and fully extend MPTCP to best fit different users’ needs.
The challenges are summarized as follow:

Lack of flexibility. All existing methods to extend the
native MPTCP are to handcraft a policy as a single monolithic
program. With the increasing complexity of MPTCP control
policies, it is difficult to know which building blocks of the
policies are (in)appropriate for real-world dynamic and fluc-
tuating workloads. Such an integrated, all-in-one monolithic

1MPTCP currently has two versions. MPTCPv0 [RFC6824] consists of a
set of patches to the Linux kernel [22], the latest version of which is v0.96.
MPTCPv1 is standardized by RFC8684 [23] and upstreamed to the Linux
kernel recently. It is available to users using kernel version 5.6 or newer
[24]. As eMPTCP does not impose any limitation on the MPTCP version, we
will not make a distinction between MPTCPv0 and MPTCPv1 in this paper.
Instead, we refer to both of them as the native MPTCP.

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2024.3469396

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

model lacks the ability to fine-tune and dynamically combine
modules of advanced control policies.

Limited functionalities. Current methods to extend
MPTCP, either by userspace daemons or user-defined ker-
nel extensions, are limited by the functionalities of native
MPTCP stack. For example, current MPTCP and its extensions
only work on end-hosts, so they have insufficient knowledge
and controlability of the underlying network. Thus, current
MPTCP extensions are restrictive in supporting emerging
scenarios such as multi-tenant environment.

Simultaneously ensure safety and ease-of-use. Using
eBPF to extend MPTCP kernel with a user-defined program
can ensure safety because eBPF has a verifier to strictly
check the safety and validity of the loaded program. However,
eBPF also imposes many hard limits on the verifier-acceptable
programs. Naively applying eBPF can be too restrictive to
implement some legitimate MPTCP extensions in practice.

We believe such challenges significantly hinder experimen-
tation and innovation in exploiting the multipath capability of
networks, which motivate this research.

We propose eMPTCP, a flexible framework to extend
MPTCP. This framework enables network operators to easily
specify a chain of modular policies to dynamically control
the behaviors of MPTCP at runtime. Extending MPTCP by
eMPTCP offers the following benefits:
• Modular and pluggable. Instead of using a monolithic
programming model, eMPTCP allows a modular speci-
fication of policies as a chain. Network operators can
customize and dynamically plug their program into a chain
of policies on MPTCP, without interrupting the running
network services. These modules can be further shared and
reused among multiple chains, thereby enhancing efficiency.
• Adding new functionalities. To achieve the full exten-

sibility of MPTCP, eMPTCP extends MPTCP by a hybrid
approach of direct kernel interaction and indirect packet
manipulation. Thereby, it supports a wide range of MPTCP
operations including controllable path establishment, traffic
scheduler, etc. By allowing inspection and manipulation
of network packets, eMPTCP can utilize the information
from different layers of network protocols, yielding unique
insights and exerting control beyond the end hosts. Specif-
ically, we seek to add new functionalities to MPTCP,
by investigating and innovating the usage of MPTCP in
emerging scenarios such as the multi-tenant environment
and proactive congestion control.
• Higher pace of development. With intent-based ab-

stractions and safety-verified helper functions provided by
eMPTCP, network operators can focus on essential policy
development without worrying about the details and safety
issues of the MPTCP kernel. Policies like traffic scheduling
in eMPTCP are written and maintained in Python and run
from userspace without safety risks.
eMPTCP delivers the above advantages by an implemen-

tation based on eBPF [26]. The key ingredients of eMPTCP
include: (1) a selector-actor style policy chain, which allows
operators to specify and plug in an advanced policy via a flex-
ible combination of its building blocks; (2) A policy enforcer,

which utilizes both direct, indirect, and hybrid approaches and
provides a wide range of MPTCP control operations. (3)
an intent-based abstraction along with a rich set of verifier-
accepted helper functions.

We evaluate eMPTCP by implementing several representa-
tive MPTCP extensions. In particular, we seek to add proactive
congestion control for MPTCP by embedding a customized
algorithm that allocates credits for each subflow according to
the bottleneck bandwidth. Compared with the default reactive
congestion control algorithm of MPTCP, it achieves almost
zero re-transmission under network variation. Furthermore,
we investigate the usage of MPTCP in a multi-tenant cloud
environment. By enabling MPTCP traffic generated from VMs
to traverse through multiple physical links, we improve the
throughput of baseline by up to 1.32×. We also enable
some existing MPTCP extensions with eMPTCP. For path
management, we extend the default path manager of MPTCP
by using only one path for small flows and gradually adding
subflows with user-defined parameters. The path manager can
reduce the flow completion time of small flows by up to
32.1%. For the traffic scheduler, we implement an ECF-like
[9] dynamic scheduler for a network with heterogeneous paths.
Such a scheduler can be implemented easily using only tens
of LoCs by eMPTCP and improves the application throughput
by up to 1.41×. Throughout the evaluation, eMPTCP incurs
only a small overhead in the level of nanoseconds on both
servers and low-end devices such as Raspberry Pi, and the
extra processing time accounts for as low as 0.63% of flows’
transmission time. All source codes of eMPTCP and the use
cases are publicly available on GitHub2.

II. BACKGROUND AND MOTIVATION

A. Multipath TCP (MPTCP)

MPTCP is a transport layer protocol, which removes the
single path limitation of conventional TCP. It enables the ap-
plications to simultaneously utilize several network interfaces
for communication. Applications using MPTCP can benefit
from higher aggregate throughput by exploring parallel com-
munication paths, and achieve better robustness by seamlessly
switching paths when link failures occur. It is an important
protocol for critical environments like mobile communication,
data center networking, etc. MPTCP is also emerging as a
multipurpose next-generation transport protocol, which has the
potential of replacing the current single-path TCP.

As defined by the MPTCP protocol, a separate path between
the source and the destination is represented by a subflow.
For example, if two communicating hosts and each has two
network interfaces (and hence two IP addresses), MPTCP
can establish up to four subflows between these two hosts.
Among all the subflows, a primary subflow corresponds to the
four-tuple TCP connection requested by the application. The
primary subflow is established first, followed by secondary
subflows on the other paths. Subflows are said to have been
established once their TCP connections are settled and are
ready to send or receive data. If a path becomes inaccessible,
its corresponding subflow is removed by MPTCP.

2https://github.com/chonepieceyb/mptcp ebpf control frame
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B. Extending the native MPTCP

To achieve better performance or enhanced functionalities,
there has been a number of extensions over the native MPTCP,
which cover a wide range of use cases, including traffic
scheduler [4]–[11], path management [12]–[17] and network-
application co-design [18]–[20], etc. For example, the path-
manager is the key component of MPTCP, which is responsible
to decide when and which paths (or set of paths) should
be used for the communication. The actual decisions about
path establishment are application-specific. MPTCP by default
provides four types of path-managers: default, fullmesh,
ndiffports and binder. Unfortunately, all these path-
managers are reported to be harmful to small flows in certain
cases because it introduces additional cross-interactions with
packet scheduler . Therefore, MMPTCP [13] attempted to
extend native MPTCP with more intelligent path-managers.
Furthermore, the native MPTCP suffers from performance
degradation when there are multiple heterogeneous paths.
Therefore, it is natural to extend the native MPTCP with an
enhanced traffic scheduler that reacts to the network state
change. Some representative traffic schedulers for MPTCP
include ECF [9], BLEST [7] and STFT [10]. To adapt the
native MPTCP to emerging usage scenarios, users have sought
to extend MPTCP, such as in the multi-tenant environment
[19], [20], cross-layer network design [18]–[21], etc.

MPTCP can be extended using a userspace daemon, how-
ever, it has several drawbacks, including limited functionality,
high interaction overhead, and no safety guarantee. For exam-
ple, mptcpd [25] is a user space daemon that performs MPTCP
path-management related operations. Currently, the latest ver-
sion mptcpd v0.11 (released in August 2022) supports a set of
functionalities such as path management. It has the following
limitations. First, as a generic netlink solution, mptcpd has a
strong coupling with the MPTCP kernel stack and can only
rely on events and actions supported by the stack, limiting its
functionality to path management. Second, the overhead of the
generic netlink-based userspace solution is significantly higher.
In mptcpd, each control action involves event-triggering in the
kernel, handling in userspace, and finally calling a command
API to enforce the control back to the kernel. We implemented
a simple plugin using mptcpd to set a subflow to be a backup
subflow and measured its processing overhead. This simple
action takes at least 145µs on a high-end server, making
it difficult to implement per-packet decision-making. Lastly,
mptcpd plugins lack safety guarantees. Compared to eBPF-
based solutions, mptcpd plugins written directly in C by users
can lead to issues such as out-of-bounds memory access or
unsafe termination due to programming errors, as they have
not undergone static analysis and verification. These issues
can potentially cause the mptcpd daemon to crash, impacting
overall performance.

C. Extended Berkeley Packet Filter (eBPF)

Besides the conventional method of extending MPTCP,
eBPF [28], [29] is an emerging powerful and general tech-
nology to extend the kernel, which allows custom programs
to be safely executed within the kernel. eBPF works in

several steps. First, a standard compiler (e.g., Clang-9) is used
to turn eBPF programs into BPF bytecode, whose format is
independent of the underlying hardware architecture. Then, the
bytecodes i.e., the eBPF RISC instructions are compiled just-
in-time (JIT) into the native machine instructions and finally
attached to kernel functions.

To ensure that the attached program does not crash the
running kernel , eBPF incorporates a verifier to statically check
whether the program can be safely attached to the kernel.
The verifier is executed every time eBPF loads a program to
the kernel. The goal of the verifier is to prevent the program
from accessing unauthorized memory and to guarantee that the
execution of eBPF programs will always terminate. From our
experience, it is not easy to pass an eBPF verifier, even for a
simple program. In practice, users usually leverage restricted-C
code to develop the in-kernel eBPF program and then compile
it into eBPF bytecode. The verifier checks the validity of
program by the compiled eBPF bytecode, rather than the
original program. However, the bytecode-oriented verifying
information cannot be directly correlated with eBPF programs,
making it difficult for troubleshooting. In fact, this issue
poses significant challenges in producing a verifier-acceptable
program.

Besides, extending MPTCP by using eBPF provides a
promising solution. Viet-Hoang Tran and Bonaventure [27]
presented an enhanced MPTCP path-manager as one represen-
tative kernel extension using eBPF. Nonetheless, it remains an
open question on how to dynamically tune and fully extend
MPTCP to best fit different users needs.

D. Motivation of eMPTCP

We summarize the following challenges of existing methods
to extend the native MPTCP, which motivate our design.

First, all existing methods of extending MPTCP only sup-
port the monolithic model that the policy designers need to
handcraft the policy into one single program. The limitations
are: 1) Network operators are unable to easily implement,
test, and tune an advanced MPTCP extension (e.g., schedul-
ing, path management, congestion control modules, and the
combination of them), which consists of multiple components.
For example, the extension proposed by Han et al. [30] is
composed of a coupled BBR congestion control algorithm,
an adaptively redundant detector, and a predictive packet
scheduler. The components in this extension can be dynam-
ically tuned or substituted for different network conditions
and workloads. Unfortunately, under the current setting,
it is hard to know which building blocks of the extension
work improperly in real-world systems, therefore inhibiting
the policies from maximizing their performance gain. 2) It
lacks the flexibility to combine and reuse the components of
an existing MPTCP extension. For example, shared bottleneck
detection modules [31] have the potential to be reused by
both path manager and traffic scheduler. However, with cur-
rent methods, developers need to implement multiple kernel
modules or modify the MPTCP stack from scratch.

Second, the existing methods to extend MPTCP, either
by kernel modules or userspace daemons using Netlink, are
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limited by the functionalities of the native MPTCP stack. In
particular, the naive MPTCP struggles to support extensions
that require adding new MPTCP options or packet header
fields. For example, it is hard to add new congestion control
algorithms such as proactive congestion control (PCC), due
to the inability to obtain in-network ”credit” information
with MPTCP. Another example is that the naive MPTCP
cannot support MPTCP-SBD [32] as it introduces a new
MPTCP timestamp option. Moreover, current MPTCP and
its extensions work on end-hosts only, hence lacking both
knowledge and controllability of the underlying network out of
the host. With the presence of some bottleneck links, the users
of MPTCP can not take advantage of efficient communication
over multiple paths, even though the end-hosts are multi-
interfaced. Especially in the multi-tenant environment, all
existing MPTCP extensions work only in the guest VMs and
can not utilize the aggregated network bandwidth of hypervi-
sors. Therefore, current MPTCP extensions are restrictive in
supporting emerging scenarios.

In this paper, we utilize eBPF technology instead of in-
truding into the kernel code-base to address the above two
challenges. The reasons are: 1) In production environments,
standardized kernels are commonly employed, with the de-
ployment of modified kernels generally discouraged. 2) It
takes a long time for an extension (e.g., MPTCP-SBD) to be
standardized and implemented into the mainstream kernel [33].
3) The eBPF technology facilitates non-intrusive kernel exten-
sion. Compared to kernel modules, eBPF’s verifiability ensures
safety, accelerating the development, testing, and deployment
cycles of new extensions. However, utilizing eBPF technology
to extend MPTCP also presents a new challenge as follows.

Third, although the emerging eBPF technique provides an
effective mean to inject a user-defined program into the kernel
with a safety guarantee, it is still very restrictive to implement
an MPTCP control policy with eBPF due to its safety val-
idation. From our experience, there are many verifier-related
issues that may hinder the development of MPTCP extensions.
In fact, even some simple yet valid pseudo-C code might be
rejected by the verifier after compiling into bytecode due to
the implicit compiler optimization. The error information is
bytecode-oriented and with poor readability, which further
aggravates the difficulty of troubleshooting. For example,
Listing 1 demonstrates a simple and correct code, but it fails
to pass the eBPF verifier when compiled into bytecode. The
verifier only provides the obscure error message: “dereference
of modified ctx ptr R1 off=8 disallowed.”. Considering that
developing MPTCP extension programs from scratch using
eBPF requires significant effort to address various validation
issues for users, we aim to encapsulate our experience in
tackling these issues, by providing intent-based abstractions
and a rich set of easy-to-use MPTCP-related helper functions.

III. EMPTCP DESIGN

Addressing the above challenges, eMPTCP aims to achieve
the following goals:

First, eMPTCP needs to enable users to easily implement an
MPTCP control mechanism in a modular and pluggable man-
ner. eMPTCP allows network operators to divide complicated

1 SEC("tc")
2 int scancb(struct __sk_buff *ctx) {
3 ...
4 for (int i = 1; i < 5; i++) {
5 if (curr_id == i) {
6 target = ctx->cb[i];
7 break;
8 }
9 }

10 ...
11 }

Listing 1: Example of code that fails to pass the verifier
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Fig. 1: eMPTCP and the networking stack.

MPTCP extensions into some basic and reusable components.
Together with the pluggable feature, network operators can
dynamically tune and combine these components on the fly,
without interrupting the running network services.

Second, eMPTCP needs to support the extension of a
wide range of MPTCP operations, including controllable path
establishment, dynamic traffic scheduling, etc. Beyond that,
eMPTCP should allow an operator to define new options and
add new functionalities for emerging usage scenarios.

Third, eMPTCP needs to be user-friendly to network opera-
tors, so that they can focus on the essential policy development
without safety concerns. Although eMPTCP is supposed to
automatically guarantee the correctness of the execution by
the eBPF verifier, it needs to hide the verification issues from
users as much as possible.

A. Design Choices

Overall, eMPTCP utilizes eBPF by developing all policies
as eBPF programs executed within the kernel, which enables
eMPTCP to securely extend MPTCP. The eBPF program needs
to be attached to a specific in-kernel hook to run. Different
hooks offer distinct functionalities, which correspond to design
choices of eMPTCP. The design choices are described as
follows.
Indirect approach by packet manipulation. At present,
the Linux kernel has incorporated hooks along the data path
for packet processing and redirection, including XDP [28]
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for ingress path and TC [34] for egress/ingress path. With
these mechanisms, MPTCP can be extended indirectly by
manipulating MPTCP options in packets, as the MPTCP pro-
tocol design is built upon TCP by incorporating the MPTCP
option set (type equals 30) into the TCP option field (III-C).
This approach provides several advantages, such as increased
deployment flexibility beyond end-hosts and the capability
to inspect packets for extracting detailed low-level protocol
and in-network information. However, the indirect approach
cannot support functionalities that require direct interaction
with the protocol stack, such as congestion control and traffic
scheduling.

Direct approach by in-stack kernel interaction. Currently,
the Linux kernel supports a set of hooks called STRUCT OP
[35] which enables implementing kernel structure with a
set of eBPF programs rather than the kernel module. For
example, with STRUCT OP, tcp_congestion_ops can
be implemented with eBPF programs, which enables eBPF-
based congestion control algorithms. Additionally, the MPTCP
development branch utilizes STRUCT OP to facilitate eBPF-
based traffic scheduling. Taking advantage of this mechanism,
MPTCP can be extended directly to accommodate user-defined
congestion control algorithms and traffic scheduling strategies
(III-D). Nevertheless, this direct approach has functional and
flexible limitations. Initially, its functionality is confined to the
kernel structure exposed by the kernel through STRUCT OP.
The restricted decision context accessible to eBPF-based algo-
rithms hampers access to in-network information for integrat-
ing new functionalities. For instance, both eBPF-based con-
gestion control and traffic scheduling algorithms lack access
to sk_buff for extracting in-network credits (III-E). Fur-
thermore, eBPF-based algorithms, once attached, behave akin
to a monolithic kernel module, making division into discrete
building blocks challenging for fine-tuning and configuration
at varying granularities.

The hybrid approach of eMPTCP. To achieve the men-
tioned design goals, eMPTCP adopts both direct and indirect
approaches. Notably, eMPTCP designs a hybrid mechanism
to enable the collaborative integration of these approaches
when designing extensions to enhance MPTCP with new
functionalities. eMPTCP attaches eBPF programs to both
packet processing hooks and in-stack kernel structure hooks.
According to the locations and functionality of eBPF hooks
used by eMPTCP, eMPTCP is divided into in-stack and off-
stack parts. As depicted in Fig. 1, from the network layering
perspective, the off-stack is attached to the XDP/TC hook and
lies between the driver and the network stack . Thus, the off-
stack part of eMPTCP can oversee and manipulate the whole
IP packets before they are processed in the network stack
and operate MPTCP operations indirectly. On the other hand,
the in-stack part is attached to the STRUCT OP hook and is
located in the MPTCP stack to directly control it. Additionally,
the two parts collaborate with each other through the BPF
MAP mechanism. It should be noted that eBPF is not the
only method for implementing in-stack actors. We choose it
due to its superior safety and programmability compared to
other approaches, such as netfilter or netlink, which is crucial

for implementing new MPTCP features.
The design overview of eMPTCP is shown in Fig. 2.

eMPTCP delivers its desirable features through the following
key designs:

• Selector-actor style policy chain. In order to facilitate
the modular development of MPTCP extensions, eMPTCP
employs a policy chain abstraction for MPTCP extensions.
The policy chain is composed of sub-policies and two
types of sub-policies are supported, including selectors for
inspecting and filtering packets and actors for performing
MPTCP operations. Furthermore, network operators could
compose arbitrary numbers and types of selectors and actors
at runtime to achieve flexibility.

• Policy enforcer based on a hybrid approach. To ensure
comprehensive support for MPTCP operations, eMPTCP
employs a hybrid approach. In this design, eMPTCP de-
ploys policies prior to the network stack for packet manipu-
lation (indirect approach). Additionally, eMPTCP integrates
policies into the stable extension interfaces provided by
the kernel, allowing direct control over the MPTCP (direct
approach). Moreover, eMPTCP introduces a data-sharing
mechanism to facilitate collaboration among policies lo-
cated at off-stack and in-stack, thereby facilitating the
emerging new functionalities of MPTCP.

• Intent-based abstraction. eMPTCP encapsulates and
provides a rich set of APIs and helper functions for the
ease of policy chain manipulation and policy development
while ensuring safety.

B. Selector-actor Style Policy Chains

In order to support the modular implementation of MPTCP
policies, two factors need to be considered.

Flexibility. Dividing a complex policy into several sub-
policies provides flexibility. By modifying and configuring
an arbitrary component of a complicated policy at runtime,
network operators can perform fine-tuning on the designed
MPTCP extension. Furthermore, the modular design allows the
sharing and reuse of the sub-policies for different extensions.
For example, an MPTCP traffic scheduler can utilize the
implementation of the “shared bottleneck detection module”
component in the path-manager extension. Furthermore, using
a subset of the existing policies or a combination of them can
generate a variety of new MPTCP extensions easily.

Granularity. The second question is how to and in what
granularity to select the relevant MPTCP connections and on
which the policies are enforced. The control policy can be
enforced on various granularity, including connection level,
sub-flow level, or even packet level. For example, a path
manager works on each subflow of an MPTCP connection;
the traffic scheduler works for specific packets or subflows.

Considering both flexibility and granularity, eMPTCP uses a
selector-actor style policy chain for designing MPTCP exten-
sions. As Fig. 2 shows, this design decouples the policy chain
into two functionally independent components: (1) a selector
chain and (2) an actor chain. And they are composed of sub-
policies implemented as an eBPF program called selectors and
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Fig. 2: eMPTCP overview.

actors respectively. The selector chain filters unrelated events,
and forwards the related ones to specific action chains. In
terms of functional design, a typical selector is a Connection
selector which checks the 4-tuple and MPTCP token to handle
only the desired MPTCP connections. Table I shows a list
of supported selectors of eMPTCP. Note that selectors are
also chainable. The network operator can specify an arbitrary
number of selectors with logic operators like AND or OR
to combine them. This multiple expression combiner is an
efficient way to select different granularities of inputs. For ex-
ample, by combining the Port selector and Connection selector,
operators can identify the MPTCP connections belonging to
the same server. Then the actor chain performs operations that
should be taken on the selected events. The implementation
of selectors and actors is modular and can be chained with
arbitrary numbers and all the sub-policies can be added or
removed from chains at run-time, without interrupting the
running services. Note that combining selectors and actors in a
chain can form a sophisticated mechanism with high flexibility
and various levels of granularity. Such a selector-actor model
further benefits eMPTCP with improved performance by fil-
tering irrelevant events as soon as possible, and forwarding the
relevant ones to the suitable actor chain. The filtered events
can be ignored or dispatched to the default handler, such as
kernel stack.

With the general architecture of the policy chain, another
important problem that needs to be solved is how to deploy
the policy chain. Conventionally, different eBPF programs can
be chained through tailcall mechanism as a complete eBPF
program, which overcomes the limitation that a hook can only
be attached by a single eBPF program at any given time.
However, this direct approach is not suitable for the design
of eMPTCP, and it introduces two significant challenges.
Firstly, the tailcall mechanism cannot be directly used to
chain policies between the off-stack and in-stack parts. This
limitation arises because the tailcall mechanism only works
for eBPF programs attached to the same hook. Secondly, the
selector-actor architecture cannot be deployed in the in-stack

part due to the absence of tailcall support in the hook used
by the in-stack part, resulting in the lack of flexibility and
granularity in the in-stack part.

Taking into account the two challenges, eMPTCP employs
a combination of direct and indirect approaches to deploy the
policy chain. In general, the main components of the selector-
actor policy chain are deployed in the off-stack part. The off-
stack part establishes connections between all the selectors
and the majority of actors using the tailcall mechanism.
Additionally, several actors are deployed in the in-stack part to
directly control the MPTCP stack and they establish indirect
connections with the off-stack part through BPF MAP. In this
design, the policy chain is triggered by packets. The selector
chain filters relevant packets and redirects them to the off-stack
actor chain, which performs MPTCP operations indirectly
through packet manipulation. Additionally, the actors within
the off-stack actor chain develop strategies and store them
in the BPF MAP. Subsequently, the in-stack actors retrieve
these strategies from the BPF MAP and directly control the
MPTCP stack. This design allows eMPTCP to compose sub-
policies that are distributed across different locations as a
policy chain. It is worth mentioning that the selector-actor
policy chain is a general structure. It can be utilized to extend
other protocols as required. eMPTCP supports users to develop
their own selectors/actors easily and provides pre-defined ,
MPTCP-specific, and verifier-acceptable selectors/actors.

C. Indirect Packet Manipulation
The off-stack part of eMPTCP utilizes packet manipulation

to support a wide range of MPTCP operations. Such a design is
based on the rationale that MPTCP adds a new set of options to
the TCP option field, which are exchanged between MPTCP-
enabled end-hosts. Therefore, modifying the MPTCP-specific
options in the packet header can alter the MPTCP behaviors.

Defined by the standard MPTCP protocol, the main MPTCP
options include MP_CAPABLE, MP_JOIN, MP_DSS3,

3Currently, we do not modify MP DSS in existing extensions. We name it
here for its potential usage and eMPTCP’s ability to manipulate it.
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TABLE I: Selectors supported by eMPTCP.

Selector name Functionality

mptcp_conn Filter packets by the token of MPTCP
connection.

subflow Filter packets by the TCP 4-tuple.
ip_pair Filter packets by a (src,dst) pair.
src/dst Filter packets by source or destination

IP address.
sequence Filter packets by Data Sequence Num-

ber or Subflow Sequence Number
packet_type Filter packets by type, e.g., MPTCP

SYN, Data ACK, etc,.

ADD_ADDR, REMOVE_ADDR, MP_PRIO, MP_FAIL,
MP_FASTCLOSE and etc. Through manipulation on these
options, eMPTCP can provide control on the subflow-level
behaviors of MPTCP. For example, removing the ADD_ADDR
packets from the communication peer will inhibit MPTCP
from establishing new subflows, and re-inject that packet
would automatically trigger MPTCP to establish new
subflows 4. Beyond that, rate-limiting of MPTCP subflows is
implemented by modifying the receive window (RWND) on
incoming ACKs. The rationale behind this design is that the
protocol stack uses min(CWND, RWND) to limit how many
packets it can send. This enforcement of RWND provides an
upper bound to rate limit a flow in networks. This is feasible
because, as RFC6824 and RFC8684 have mentioned, a host
should maintain the connection-level receive window as well
as all subflow-level windows.

Table I demonstrates the selectors supported by eMPTCP
and their selection granularity. Table II summarizes the actors
supported by eMPTCP and the corresponding packet manip-
ulation. The selectors and actors listed in the tables are inde-
pendent eBPF programs designed to perform specific actions
within a policy chain. Table II also lists templates for creating
new actors or selectors, such as the sched_template,
which acts as a template for actors developing scheduling
strategies in the off-stack policy chain. It should be noted
that the actors listed in Table II can be triggered from either
the sender (i.e., egress path) or receiver (i.e., ingress path)
side, affecting the protocol stack of the receiver. For instance,
regardless of the triggering location, the blk_subflow actor
blocks the sender’s address from the receiver, preventing sub-
flow establishment, while the add_ subflow actor enables
the receiver to rediscover the sender’s address. The method
of packet manipulation enables eMPTCP to support a rich set
of functionalities. For example, it enables MPTCP to interact
with other cross-layer network protocols.

Note that MPTCPv0 and MPTCPv1 have some differences
in the protocol design and eMPTCP is expected to handle
the difference automatically. One representative example is to
work around ADD_ADDR. Specifically, MPTCP utilizes the
ADD_ADDR option to announce additional addresses (and,
optionally, ports) on which a host can be reached. The mech-
anism of the ADD_ADDR option is quite different between

4The behavior of establishing subflows is based on the assumption that both
ends use fullmesh as path management algorithm.

MPTCPv0 and v1. In MPTCPv1, there are some additional
mechanisms: 1) MPTCPv1 introduces ADD_ADDR ack for
reliable transmission of this option. 2) MPTCPv1 adds ad-
ditional information (8 octets of truncated HMAC) with the
ADD_ADDR option for authentication. eMPTCP handles the
additional mechanisms. First, to block the ADD_ADDR Option,
in MPTCPv1, after filtering the ADD_ADDR option, the peer
won’t send ADD_ADDR ack back because the ADD_ADDR
was not received. The sender will keep retransmitting the
ADD_ADDR if the ADD_ADDR ack is not received within a
specified timeout (configurable with sysctl).

There are two methods to solve this issue:
1) Filtering subsequent retransmitted ADD_ADDR. To keep

the extra remote addresses invisible to the host, a direct way
is to filter the subsequent retransmitted ADD_ADDR. This
approach is easy to implement and suitable for short-term
blocking. It is also convenient for recovering the ADD_ADDR.
We can just remove such blocking, and the retransmitted
ADD_ADDR can be received by the peer.

2) Constructing the ADD_ADDR ack. The second method
is that, when blocking the ADD_ADDR, we also construct
the corresponding ADD_ADDR ack and send it to the peer.
Constructing ADD_ADDR ack can be implemented through the
eMPTCP actor. In detail, the actor attached to the XDP/TC
hook constructs the ADD_ADDR ack based on the originally re-
ceived ADD_ADDR. It swaps MAP PORT, sets the Echo-Flag,
removes the truncated HMAC, and recalculates the checksum.
After that, the actor sends the ADD_ADDR ack back to the
sender through XDP/TC packet redirecting. Although this
method prevents the ADD_ADDR retransmission, it requires an
additional mechanism to recover the blocked addresses. The
trick is to reconstruct the ADD_ADDR packet. To achieve this
goal, we duplicate the latest ACK and inject the previously
blocked ADD_ADDR information (including the authentication
information). In this manner, the constructed packet will be
accepted by the kernel stack. Note that the duplicated acks
won’t affect the congestion window. This is because MPTCP
treats duplicated acks carrying any MPTCP option except for
DSS options as control packets rather than congestion signals,
according to RFC 8684.

It is worth noting that supporting path management through
packet manipulation without modifying the kernel relies on
the existing path management algorithm to obtain manageable
paths. In this paper, we build eMPTCPs path management
upon the fullmesh. Although this approach seems hacky, it
has three advantages. Firstly, from a deployment perspective,
it allows us to deploy eMPTCP as a middlebox, such as within
a hypervisor. Secondly, from a compatibility perspective, this
method does not depend on the specific implementation of the
protocol stack or the particular hooks within the protocol stack.
Finally, this approach has zero intrusion into the kernel.

D. Direct Kernel Stack Interaction

The ability to directly interact with the kernel stack is
necessary to extend traffic scheduling and congestion control
of MPTCP. Currently, this direct control can be achieved
by attaching eBPF programs to the STRUCT OP hooks

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2024.3469396

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE II: Actors supported by off-stack part of eMPTCP.

Actor name Parameters Description

rate_limit Rate Update the recv_win of ACKs of a subflow to control the sending rate.
set_backup Priority Add MP_PRIO option to packet to set or remove the current subflow
blk_subflow N/A Remove and store MP_ADD_ADDR to avoid creation of subflows.
add_subflow N/A Add MP_ADD_ADDR to packet and enable creation of subflows.
get_connect N/A Parse MP_CAPABLE option t send MPTCP keys to event queue.
get_subflow N/A Parse MP_JOIN option to send subflow token to event queue.
sched_template N/A Template for actor making traffic scheduling strategies and cooperating with in-stack actor
cong_template N/A Template for actor making congestion control strategies and cooperating with in-stack actor
record Metric Record specific metrics of selected packets such as RTT, flow size and etc,.

which are extension interfaces exposed by the kernel in-
cluding mptcp_sched_ops for MPTCP traffic scheduling
and tcp_congestion_ops for TCP congestion control.
Take MPTCP traffic scheduling as an example, an eBPF-
based traffic scheduler can be attached to the STRUCT OP of
mptcp_sched_ops. Once attached, when MPTCP starts to
send a segment, the associated eBPF programs are invoked and
make decisions on selecting one or multiple subflows for trans-
mitting the segment or potentially deferring the transmission.
A straightforward use of this technique is to directly integrate
traffic scheduling algorithms like min-RTT, BLEST [7], and
ECF [9] into the eBPF programs. However, as described in
Section III-B, this approach fails to leverage the design of the
policy chain and lacks flexibility and granularity because of
the failure of deploying the policy chain in the STRUCT OP
hook.
eMPTCP approach: eMPTCP adopts a strategy formulation
and execution separation approach where the eBPF programs
attached to the STRUCT OP hooks are regarded as in-stack
actors. The whole approach consists of three steps. Firstly,
the in-stack actors collect metrics from the MPTCP stack
and store them in BPF MAP. Secondly, the off-stack actors
formulate strategies, such as traffic scheduling strategies, for
the specific algorithm based on the collected metrics. The
strategies are then stored in BPF MAP by the off-stack actors.
Finally, the in-stack actors execute actions directly based on
strategies retrieved from the BPF MAP. This design empowers
eMPTCP to have direct control over the MPTCP stack as a
straightforward approach while providing two benefits. First,
it provides flexibility and granularity by leveraging the policy
chain design of eMPTCP. For example, it is possible to specify
and fine-tune traffic scheduling extensions at runtime for
different MPTCP connections on demand. Second, compared
with collecting metrics by optional tracing technologies like
kprobe, it eliminates redundant computations and function
calls by integrating metric collecting logic and taking action
logic in one place.

E. Hybrid Policy Enforcer

The native MPTCP reveals limitations in emerging scenar-
ios. For example, Xu et al. [20] demonstrate that in a multi-
tenant scenario, MPTCP deployed in virtual machines (VMs)
fails to detect the presence of multiple underlying physical
links. Consequently, there is a need to redesign the MPTCP
stack to effectively detect this information and respond accord-

ingly. Another example is proactive congestion control [36].
Proactive congestion aims to anticipate and prevent congestion
in advance by taking preemptive measures, for example, pre-
allocating bandwidth to network flows in the form of credit.
This approach yields improved performance, especially in
data-center networks. However, the current MPTCP stack in
the Linux kernel adopts traditional reactive congestion control
architecture, which responds to congestion after it has already
occurred, based on acknowledgments (ack clock). To enable
proactive congestion control for MPTCP, modifications to the
Linux kernel implementation are necessary, as the current ex-
tension interfaces exposed are designed for reactive congestion
control.

We argue that supporting the addition of new functionalities
to MPTCP with minimal engineering effort, particularly with-
out modifying the kernel, is crucial for the advancement of the
protocol. To achieve this kernel-modification-free extension
manner, two necessary conditions need to be met. First, it
requires the ability to control the protocol stack, such as
controlling the scheduling procedure of MPTCP. Second, it
requires the ability to perceive information beyond the existing
protocol stack, such as the additional data added to packets by
in-network switches. However, neither the indirect approach
nor the direct approach fulfills both requirements. The indirect
approach of packet manipulation fails to control the procedure
of congestion control and traffic scheduling. The direct ap-
proaches of the eBPF module lack information for these new
functionalities in the control block and decision context. For
instance, without the necessary codes in the MPTCP stack
to extract credit information, user-defined traffic scheduling,
and congestion control extensions using direct approaches are
unable to effectively perform proactive transportation.

eMPTCP approach: eMPTCP employs a hybrid policy
enforcer, utilizing the policy chain design of itself, which
combines both indirect and direct approaches to add new
functionalities to MPTCP without modifying the kernel. In
the policy chain of eMPTCP, the off-stack actors based on
packet manipulation of indirect approach are capable of ex-
tracting beyond-stack information through packet inspection,
for example inspecting ”credit” information added by in-
network switches. Subsequently, other off-stack actors can
develop strategies based on this extracted information. Finally,
the in-stack actors directly control the stack according to
the strategies. By coordinating the off-stack and in-stack
actors in the policy chain, which integrates both indirect and
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direct approaches, eMPTCP is able to effectively meet the
aforementioned two requirements. To illustrate how adding
new functionalities of MPTCP benefits from eMPTCP, we take
proactive congestion control as an example. The policy chain
enabling proactive congestion control consists of the following
components: (1) MPTCP selector. An off-stack selector selects
target MPTCP connections. (2) Subflow selector. An off-stack
selector selects subflows belonging to the same target MPTCP
connection (3) Credit auditor. An off-stack actor inspects the
packet and extracts credits. (4) Traffic Scheduler. An off-stack
actor that devises the traffic scheduling strategy depends on
the credits and stores the strategy to BPF MAP (5) Congestion
Controller. An in-stack actor that sets the congestion window
to a fixed value. (6) Traffic strategy executor. An in-stack
actor directly selects subflows to send a segment or defers
the transmission according to the strategy. This policy chain
enables proactive congestion control for MPTCP by extracting
credits in the off-stack part and controlling the MPTCP stack
in the in-stack part.

F. Intent-based Abstraction

In order to accelerate the development of MPTCP exten-
sions, eMPTCP provides a rich set of intent-based abstractions.
First of all, eMPTCP incorporates a set of helper functions
to customize the combination of policy chains, e.g., adding,
removing, or inserting a selector or an actor to an arbitrary
chain. With the provided interfaces, operators can specify their
desired control policy as a chain of user-defined programs.
eMPTCP also provides a rich set of easy-to-use MPTCP-
related helper functions to encapsulate the policy enforcers.
The underlying implementation details of these helper func-
tions are transparent to users and they have all passed the
strict eBPF verifier. This design greatly eases the adoption of
eMPTCP, and it decouples the policy design from underlying
kernel execution. Network operators can focus on the policy
essentials without worrying about the details and safety issues
of the MPTCP kernel.

IV. EMPTCP IMPLEMENTATION

As shown in Fig. 3, the implementation of eMPTCP is
primarily based on eBPF technology. In this section, we
discuss the details of how to implement eMPTCP and share
our experience in tackling various verifier-related issues when
using eBPF to implement a complicated framework.

A. Policy Chaining Using eBPF Tail Calls and BPF MAP

The functional logic of eMPTCP is to disseminate the user-
defined MPTCP control policy into multiple small building
blocks locating in off-stack part and in-stack part . eMPTCP
chains the building blocks in the off-stack part using the
eBPF tailcall mechanism and connects the off-stack chain
and building blocks in the in-stack part using BPF MAP.
More specifically, first, Each building block of the policy is
implemented by an eBPF program and they are analyzed and
loaded independently which reduces the analysis complexity
of the verifier and helps to pass the eBPF restrictions on
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Fig. 3: eMPTCP implementation.

program sizes. An eMPTCP program in off-stack part sup-
ports controlling both directions of egress and ingress network
traffic. For ingress traffic, we attach eBPF programs to eXpress
Data Path (XDP) [28], and for ingress traffic, we attach them
to Traffic Control (TC) [34]. Second, to support the run-time
combination of building blocks in off-stack parts , operators
need to describe how and in what order these sub-policies are
to be chained. The description of policy chaining is defined in
the data structure called chain context as depicted in Fig. 4.
In eMPTCP implementation, the chain context is an array of
4-byte data. The first byte represents the next sub-policy to be
called. The second to fourth bytes represent the parameters of
the current sub-policy. Furthermore, the context is stored as
the metadata (xdp_md for XDP, and cb for TC, respectively)
of packet data structure in the kernel. The entrance of the
chain, either a selector or an actor, parses the metadata,
acquires the index of the next sub-policy, and then queries the
prog_array of eBPF tail calls to locate the next sub-policy.
The sub-policies can be reused and combined dynamically by
customizing the context metadata. Third, we attach a pre-
defined eBPF program as an actor to STRUCT OP hooks
in the in-stack part. The actors implement the interfaces ex-
posed by the kernel stack including tcp_congestion_ops
and mptcp_sched_ops for congestion control and traffic
scheduling respectively. Additionally, the behavior of in-stack
actors is affected by the chain in the off-stack part using BPF
MAP. For example, a traffic scheduler strategy maker in an
off-stack chain develops a traffic scheduling strategy by every
ack and stores the strategy in BPF MAP. The actor attached
to mptcp_sched_ops performs actual traffic scheduling by
retrieving the strategy for BPF MAP. eMPTCP also supports
user-defined in-stack actors by encapsulating such connection
mechanisms into ease-of-use APIs. The details of how to share
data between the in-stack part and the off-stack part will be
described in the next part.

It is worth noting that policy chains introduce additional
overhead while facilitating modularity and scalability. The
overheads are caused by storing and processing the chain
context information. However, the overhead is quite small,
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because of the full use of existing data structures (XDP and
TCs packet metadata) and the carefully designed policy chain
context data structure.

B. Data Sharing Among Different Sub-policies

Data sharing servers for three purposes. First, it avoids
redundant computation after dividing a sophisticated extension
into multiple sub-policies in a chain. Second, it enables the
combination and connection between the off-stack part and the
in-stack part of eMPTCP. Third, it enables the communication
between userspace programs and the kernel functions. The
promote challenge of data sharing lies in the coordination
of multiple access to the same data from different programs
running in different contexts. Specifically, the eBPF programs
in off-stack part execute in softirq context while the eBPF
programs in in-stack part execute within the protocol stack
context. Addressing this issue, eMPTCP utilizes different
mechanisms to share intermediate results or control parameters
among sub-policies in different scenarios.

In the off-stack part, the sub-policies within the same chain
are invoked and executed sequentially on the same CPU, be-
cause the eBPF programs connected by the tailcall still execute
in the same softirq context . Thus, ensuring the independence
of data between different CPUs becomes a primary concern.
eMPTCP employs two mechanisms to achieve this objective.
First, if the shared data is small enough, e.g., less than 2
bytes, it can be stored inline in the last two bytes of the chain
context which is stored in per-packet metadata. Such a method
is cost-efficient and avoids extra storage or memory access.
Alternatively, if the shared data is large, we use per-cpu BPF
MAPs to realize the data sharing. The per-cpu BPF MAPs are
specific types of BPF MAP including per-cpu hash and per-cpu
array which maintains data in each CPU independently. Using
per-cpu BPF MAPs, sub-policies in the same policy chain
operating on each packet can share data without concurrency
issues. It should be noted that the data sharing through
BPF MAP requires the reuse of MAP file descriptor of the
same map among eBPF programs. To do so, we use eBPF
bpf_obj_get() system call to obtain a file descriptor of
BPF MAP and then use bpf_map_reuse_fd() function
to replace where the same BPF MAP is used in different
programs.

Unfortunately, when it comes to the connections between
the off-stack part and the in-stack part, the eBPF programs
in these different parts are not invoked within the same
context and may run on different CPUs. This necessitates
additional concurrency control mechanisms to avoid data
races, as the solutions involving packet meta and per-CPU
BPF MAPs are not applicable in this scenario . Com-
monly, BPF MAP provides common data structures such as
HASH and ARRAY that can be used by eBPF programs
running on different CPUs. These maps, unlike per-CPU
BPF MAPs, maintain a single copy of the data that is ac-
cessed by eBPF programs across different CPUs. The HASH
and ARRAY can be accessed in two patterns without data
concurrency issues. Firstly, different eBPF programs access
the map through the atomic replacement or deletion of the
entire element using the bpf_map_update_elem() or

bpf_map_delete_elem() helper functions. However, the
overhead of constructing the entire elements each time is
significant. Thus, the eBPF programs prefer to adopt the
second approach. That is, they first retrieve the address of
the target element by calling bpf_map_lookup_elem()
helper function and then access the element directly with
the address. However, multiple accesses to the same BPF
MAP element by address are not directly protected by eBPF.
Therefore, eBPF provides bpf_spin_lock mechanism. To
use bpf_spin_lock, a lock field can be integrated into
the element and the lock can be locked and unlocked on
an element-wise basis using the bpf_spin_lock() and
bpf_spin_unlock() helper functions, respectively. How-
ever, when using spin locks, it is advisable to avoid overly
complex critical sections to prevent significant performance
degradation.
eMPTCP approach: Considering the above factors, eMPTCP
employs a flag-based competition mechanism. This mecha-
nism aims to maintain a simple critical section, minimizing
the time of blocking eBPF programs, particularly the packet
processing program in the off-stack part. Initially, eMPTCP
integrates a flag field as well as the lock into each element.
And the spinlock is exclusively utilized to protect this flag
field rather than the whole element. eMPTCP regards the
off-stack actors as the consumers and in-stack actors as the
producers. In a data-sharing procedure, multiple consumer
programs contend for the flags, with only one program being
successful in acquiring the flag. The winner of the contention
then unsets the flag, exits the critical section, and proceeds
with the remaining operations of formulating strategies. On
the other hand, the consumer programs that fail to obtain the
flag just abort the operation. The operation can be performed
only if the flag is set by the producer program after it takes
action according to the strategies. The competition for the
flag is protected by the bpf_spin_lock. Take the traffic
scheduling extension as an example, the sub-policy of traffic
schedule making the traffic scheduling strategy is the consumer
and the in-stack actor of traffic strategy executor performing
actual traffic scheduling is the producer.

When it comes to communication between userspace pro-
grams and in-kernel eBPF programs, eMPTCP uses different
mechanisms including per-cpu BPF MAPs, spinlock, and raw
bpf system calls depending on the required level of concur-
rency control. For example, in certain scenarios where the
userspace program solely updates the entire element while the
eBPF program in the kernel only reads it, the default usage
of bpf system call which provides concurrency control based
on Read-Copy-Update (RCU), is sufficient. It is important to
note that the MAP might be automatically destroyed if no
program in the kernel is using it. To prevent the MAP from
unintentionally being deallocated, we pin the BPF MAP to the
BPF Virtual File System (VFS). BPF VFS is actually not a real
file system, it only keeps the MAP alive by always referring
it, incurring a small overhead.

C. Different Kinds of Packet Manipulation
The off-stack part of eMPTCP exerts a fine-grained control

on MPTCP through packet manipulation. Some representative
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Fig. 4: Definition of the chain context. The chain context is
implemented using packet metadata, xdp_md for XDP hook
and tc_cb for TC hook. Next Policy is used to identify the
next actor/selector. P denotes the type of parameter, which
can be either Immediate (directly embedded in the context) or
Address (parameters that need to be read from the BPF map).

manipulations are:
(1) Modifying an existing MPTCP option. This kind of

operation requires no change in the length of the header space.
eMPTCP provides a set of inline helper functions to obtain
pointers to header options of different protocols, such that
the user-defined program can access the packet directly and
modify the desired header field. To ensure consistency, a helper
function is evoked to update the checksum.

(2) Removal of an MPTCP option. eMPTCP performs the
removal of an option by overriding the option with NOP rather
than shrinking the length of header space which introduces
additional overhead. Thus, the removal operation reuses the
packet modification helper functions, with the difference that
the specific option is always modified by value NOP.

(3) Injection of a new MPTCP option. Since eBPF does not
provide a native API to increase the length of a packet header,
we implement the operation in three steps. First, increase
the length of the packet by eBPF adjust-header-room
helper functions. Second, move the original packet header data
forward and reserve the space for injection of the new options.
Finally, write the MPTCP option into the reserved space and
update the checksum. Similarly, we provide this functionality
as an inline helper function to simplify the usage and expand
the original eBPF helper functions.

It is worth noting that reinjecting options need to consider
the MTU (Maximum Transmission Unit). Currently, there are
several situations where MPTCP options may need to be
injected. First, when the receiver gets a packet and needs to
inject new MPTCP options into it, such as the ADD ADDR
option to restore a subflow. In this case, MTU does not need to
be considered. Second, when adding new MPTCP options at
the sender side, such as implementing the MPTCP-SBD [32]
and including a new MPTCP timestamp option, this situation
is similar to packet encapsulation and does require MTU
considerations. The solution involves slightly adjusting the
connection’s MSS (Maximum Segment Size). Lastly, due to
the limited TCP option space, a completely new packet may
be needed to inject MPTCP options. The trick here is that
eMPTCP leverages or duplicates the latest packets or ACKs
to piggyback the option values. With correct timestamp and
checksum, the packets will be accepted by the MPTCP stack.
Moreover, the duplicated MPTCP Data ACKs won’t affect the

congestion window, according to RFC 8684.

D. Verifier Acceptable Helper Functions

eMPTCP accepts standard user-defined eBPF programs as
customized policies (actors or selectors). Beyond the basic
eBPF helper functions, eMPTCP has provided a wide range of
helper functions such as increasing the MPTCP header space,
acquiring the specific MPTCP option, adding a new MPTCP
option, and, most importantly, a set of functions to manipulate
the policy chain. These helper functions are all intent-based
and eBPF verifier acceptable. Thus, it significantly simplifies
the development of customized policies, allowing operators to
focus on designing the policy essentials.

V. EVALUATION

In this section, we first evaluate the performance overhead of
using eMPTCP in practice. Then we present several real-world
MPTCP extensions implemented by eMPTCP and evaluate
their performance.

Testbed. The testbed we use in the experiments consists
of 7 servers, each of which is equipped with two Intel(R)
Xeon(R) E5-2630 v4 CPUs (12 cores) and 128GB of memory.
Each server is equipped with 3 10Gbps Broadcom Network
Interface Card, and are connected through a Mellanox 40Gb
switch. The internal network is considered to be non-blocking,
and a similar setup is used by existing research [37]. Beyond
high-end servers, we also deploy and test eMPTCP on low-
end devices. In the test cases, we use Raspberry Pi 4B as
the representative device. The Raspberry Pi 4B we use in the
experiment is equipped with a Cortex-A72 (ARM v8) 1.5GHz
CPU (4 cores), and 8GB memory. We use its WiFi and wire
Ethernet interfaces under 300Mbps speed.

MPTCP setup. The different parts of eMPTCP have vary-
ing requirements for the kernel and the implementation of
the MPTCP protocol stack. Specifically, the off-stack part
needs the kernel to support XDP and TC hooks, along with
corresponding helper functions. The off-stack part does not
impose additional requirements on the protocol stack. For the
in-stack part, eMPTCP relies on the STRUCT OP hook to
implement the in-stack actor. Therefore, the kernels eBPF must
support STRUCT OP, and the protocol stack must accommo-
date STRUCT OP hooks. Unless otherwise stated, the subse-
quent experiments are conducted based on MPTCP V0.96. For
baseline MPTCP, we turn off MPTCP header checksumming
to reduce unnecessary CPU overhead and use min-RTT as
traffic scheduler, fullmesh as path management, and cubic
as congestion control. We set receive buffers according to
RFC6182 [38] as 256MB. The experiments are conducted five
times each and the evaluation results are derived from their
average values.

Workloads. In the experiments, we generate a large number
of flows, representing network traffic of varying characteristics
(e.g., packet sizes, network bandwidth usage) by Traffic Gen-
erator [37] which is widely used in many recent researches.
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A. Overhead

We conduct several experiments on both high-end servers
and Raspberry Pi to evaluate the overhead introduced by
eMPTCP. We evaluate the time of several representative oper-
ators to process one packet using high-resolution timestamps.
First, we evaluate eMPTCP on servers.

As shown in Fig. 5a, the processing time of all eMPTCP
operations is at the level of nanosecond. The operation with
the largest cost is set_flow_prio because this operator
conducts packet header space adjustment. The total overhead
of a policy chain is composed of all selectors and actors. It
should be noted that selector entry acts as the entry point
for the selector chain, facilitating the retrieval of the selector
chain context from the BPF MAP associated with a packet.
The functionality of actor entry is similar.

Further, we perform two evaluations by controlling the
selection granularity and the length of the policy chain,
respectively. We utilize the ratio of policy chain execution
time to flow completion time as a performance metric for
assessing the impact of eMPTCP on end-to-end transmission.
Additionally, we use the traffic generator to generate a speci-
fied number of flows to simulating real-world scenarios. In the
first evaluation, the coarsest granularity represents the worst
situation when all packets are processed by the policy chain.
The length of the policy chain was set to 2 (1 selector and 1
actor), 4 (1 selector and 3 actors), and 8 (4 selectors and 4
actors), respectively. As Fig. 5b shows, the extra operation
time of eMPTCP contributes to less than 2% of the total
transmission time of flows, for all lengths of the policy
chain. Moreover, the cost is stable even with the number
of concurrent flows increasing to 10,000, demonstrating the
scalability of eMPTCP. In the second evaluation, the length of
the policy chain was fixed to 4 and the selection granularity
is varied from coarse-grained to fine-grained with different
selectors. Fig. 5c shows that the average overhead of eMPTCP
is around 0.63% of the total packet transmission time. The
result reveals that the finer the granularity is, the fewer packets
will be selected for actors, thus incurring less overhead. It also
demonstrates the effectiveness of the selector chain to reduce
additional overhead by filtering the most irrelevant packets.

eMPTCP also costs a few extra CPU cycles. We measure
the extra CPU usage under heavy traffic by switching on/off
eMPTCP. Furthermore, we evluate CPU usage under different
numbers of parallel connections. Fig. 5d demonstrates the
results that eMPTCP costs less than 0.35% extra CPU usage
on average.

Then, we test eMPTCP on Raspberry Pi, and the method-
ology is the same as server’s. As shown in Fig. 6a, the
processing time of the representative eMPTCP operations is
just a little higher than that on servers by an average of 1.8×.
It still remains around a few hundred nanoseconds, ranging
from 95ns to 859ns. Further, we observe from Fig. 6b that
although the absolute value of the processing time is higher,
the percentage that accounts for the total packet processing
time is lower. On Raspberry Pi, the performance cost ranges
only from 0.52% to 0.85%. The reason is that, on low-end
devices, the network throughput is much lower, such that the
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Fig. 6: Performance evaluation on Raspberry Pi.

processing time for each packet prolongs. In this case, the
performance cost, in terms of the amount of time compared to
the packet processing time, decreases. For the aspects of extra
CPU usage, we can see from Fig. 6d that, even on low-end
devices, eMPTCP takes very little extra CPU usage of less
than 3%. This is because all eMPTCP functions run within
the kernel, eliminating the overhead associated with context
switches, and their complexity is limited, as ensured by the
verifier

B. Use Cases

Building on top of eMPTCP, we can implement various
user-defined control policies for the multipath environment
with a modest size of code and zero changes to the native
kernel implementation of MPTCP. Generally, there are two
approaches to developing new extensions based on eMPTCP.
The first is to combine eMPTCP’s pre-defined actors and
selectors into a policy chain, which can be implemented
directly in userspace. For example, both use case 3 and use
case 4 can be achieved this way. The policy chain can be easily
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configured using the Python interface, as shown in lines 4-5
of Listing 4 and lines 12-13 of Listing 5. The second method
allows users to create new selectors or actors using the helpers
and macros provided by eMPTCP. This applies to use case 1
and use case 2. To implement new helpers, users only need to
use the macros provided by eMPTCP at the beginning and end
of the eBPF program, as shown in lines 3 and 10 of Listing 2
and lines 3 and 8 of Listing 3.

Use case 1: Proactive congestion control for MPTCP. One
promising feature of eMPTCP is to enable new functionalities
of MPTCP. In this case, we investigate adding functionality
of proactive congestion control for MPTCP with eMPTCP. To
do so, we develop a policy chain as described in section III-E
at the sender host as a simple proactive congestion control
algorithm. Additionally, we develop a naive credit generator
that generates credit uniformly regarding the bandwidth of the
bottleneck link and allocates credit to all flows according to
their arrival order. We implement the credit generator as an
XDP program which modifies the packet by adding allocated
credit information to the packet header and attaches it to the
receiver host. The credit information will be inspected by
an actor in the policy chain of the sender. We compare the
performance including the total number of re-transmission and
aggregate throughput between this extension (eMPTCP) with
the default MPTCP congestion control algorithm (i.e. cubic)
used in Linux kernel (MPTCP). The rest of MPTCP config-
uration for both is the same which includes setting fullmesh
as the path management algorithm and setting BLEST as the
traffic scheduler. We conduct experiments, using the MPTCP
V1 maintained in mptcpnet-next, specifically with the kernel
version 6.4.0. This is because the use case necessitates the
sched_ops STRUCT OP hook.

As Fig. 7 shows, we can observe that as the number of
parallel MPTCP connections increases, there is a noticeable
rise in the total number of re-transmissions and a slight
decrease in the aggregate throughput when using the de-
fault MPTCP.In contrast, eMPTCP stands out by achieving
nearly zero retransmissions while ensuring that the aggregate
throughput remains equal to or slightly better than that of
the default MPTCP. The reason for this is that the default
congestion control algorithm of MPTCP reacts to congestion
after it has already occurred. On the other hand, the eMPTCP
extension allows for controlling the sending of packets based
on credit, thereby preventing congestion.

Use case 2: MPTCP in the multi-tenant environment. One
promising feature of eMPTCP is to enable new functionalities
of MPTCP. In this test case, we investigate the usage of
MPTCP in the multi-tenant environment. With the increasing
demands of VM-VM communication, there is an urge to
utilize multiple paths in data center networks to improve
network performance. Intuitively, the multipath transmission
functionality can be added to VMs by deploying and enabling
MPTCP in VMs. However, such a naive method will face
two challenges. First, MPTCP is an end-host solution and
the traffic of MPTCP-enabled VMs is not guaranteed to
send through different physical links. Second, VMs belong
to customers and we do not assume the network operators

1 SEC("xdp")
2 int parse_credit(struct __sk_buff *ctx) {
3 XDP_POLICY_PRE_SEC
4 get_credit_key_xdp(&ckey, subflow);
5 s64 credit = parse_credit(ctx);
6 s64 *subflow_credits;
7 subflow_credits
8 = bpf_map_lookup_elem(&credits_map, &ckey);
9 __sync_fetch_and_add(subflow_credits, credit);

10 XDP_ACTOR_POST_SEC
11 }
12
13 SEC("struct_ops")
14 int BPF_PROG(sched_credit, struct mptcp_sock *msk
15 struct mptcp_sched_data *data)
16 {
17 for (i = 0; i < MPTCP_SUBFLOWS_MAX; i++) {
18 if (data->contexts[i] == NULL)
19 break;
20 struct credit_key ckey;
21 subflow = data->contexts[i];
22 get_credit_key(&ckey, subflow);
23 s64 *subflow_credits; s64 credits_left;
24 subflow_credits = bpf_map_lookup_elem
25 (&credits_map, &ckey);
26 if (subflow_credits == NULL)
27 continue;
28 credits_left
29 = __sync_fetch_and_sub(subflow_credits, 1);
30 if (credits_left <= 0)
31 continue;
32 /* other sched ALG, here use min_rtt */
33 ...
34 choose_idx = i;
35 }
36 mptcp_subflow_set_scheduled
37 (data->contexts[choose_idx], 1);
38 }

Listing 2: Example of use case 1.
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Fig. 7: Effectiveness of eMPTCP enabled Proactive congestion
control.

have all authority over guests’ VMs. Thus, current methods
to extend MPTCP by kernel modification or mptcpd are not
applicable in the multi-tenant environment. Addressing this
issue, we deploy eMPTCP on the hypervisors, and implement
a simple traffic management policy that different subflows are
sent through multiple physical interfaces.

By enabling different subflows to send through multi-
ple physical interfaces, eMPTCP delivers higher aggregate
throughput for VMs. We measure the throughput of traffic
between one pair of VMs with varying amounts of background
traffic. Fig. 8a demonstrates that eMPTCP can improve the
aggregate throughput for VMs by 23.03% when there is no
background traffic. The improvement is more obvious when
there is intensive background traffic. As is shown in Fig. 8b,
when the background traffic reaches 3Gbps, the improvement
can be as large as 32.3%. The reason is that, with eMPTCP
and the congestion control algorithms of MPTCP, VMs can
better utilize multiple paths in the multi-tenant environment
while sharing the network with other tenants.
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Fig. 8: Effectiveness of eMPTCP enabled scheduler for the
multi-tenant environment.

1 SEC("tc")
2 int mac_modify(struct __sk_buff *ctx) {
3 TC_POLICY_PRE_SEC
4 struct mac_t new_mac;
5 new_mac = PARAM.mac;
6 struct ethdr = get_ethdr(ctx);
7 modify_mac(ctx, ethdr, new_mac);
8 TC_ACTOR_POST_SEC
9 }

10
11 SEC("tc")
12 int redirect(struct __sk_buff *ctx) {
13 TC_POLICY_PRE_SEC
14 int ifindex= PARAM.ifindex;
15 bpf_redirect(ifindex, 0);
16 TC_ACTOR_POST_SEC
17 }

Listing 3: Example of use case 2.

Use case 3: Path management. bottleneck shared path
management Path management is a key component in the
connection establishment of MPTCP. It controls when and
how to establish subflows between two hosts. We design a
simple path-manager, which works as follows. First, for an
arbitrary flow, MPTCP uses only one path to transmit it at first
and incrementally adds subflows with the number of bits this
flow has sent. Second, when adding new subflows, only those
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Fig. 9: Effectiveness of eMPTCP enabled path-manager.
1 def path_management(mptcp):
2 #use only one path to transmit
3 if mptcp.time_from_start.lt(t1):
4 sc = SelectorChain().select(0,mptcp.main)
5 ac = ActorChain().add("rm_subflow")
6 else:
7 sc = SelectorChain().select(0,mptcp.main)
8 ac = ActorChain().add("add_subflow")
9 PolicyChain(sc,ac).submit()

10 #only use subflows without sharing link
11 for flow in mptcp.new_subflows():
12 if not exist_share_link(flow, mptcp):
13 continue
14 sc = SelectorChian().select(0, flow)
15 ac = ActorChain().add("set_priority", B = 1)
16 PolicyChain(sc,ac).submit()

Listing 4: Example of use case 3
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Fig. 10: Effectiveness of eMPTCP enabled traffic-scheduler.

1 SelectorChain.add("flow")
2 def ECF_scheduler(mptcp):
3 sc = SelectorChain()
4 ac = ActorChain()
5 get_flow_info(mptcp)
6 fast = get_fast(mptcp)
7 slow = get_slow(mptcp)
8 if fast.rtt + mptcp.k/fast.cwnd < slow.rtt:
9 ac.add("rate_limit", rate = 1024)

10 else:
11 #enable sending data through slow flow
12 ac.add("rate_limit", rate = 1024*1024)
13 sc.select(0,flow)
14 PolicyChian(sc,ac).submit()

Listing 5: Example of use case 4

sharing no common links with the existing subflows will be
added. Such a simple path-manager benefits small flows with
small latency and large flows with higher throughput. It should
be noted that while shared bottleneck links can be detected
through algorithms [31], [32], the primary purpose of this use
case is to verify the effectiveness of path management, not to
design a new algorithm. Therefore, we assume that information
about shared bottleneck links is already known.

Fig. 9a demonstrates the effectiveness of the eMPTCP
implemented path-manager in improving the Flow Completion
Time (FCT) for small flows (less than 220KB). Through
disabling subflows establishment at the beginning of the con-
nection, eMPTCP provides the performance near native TCP
and significantly reduces the overhead of MPTCP.

For large flows, eMPTCP further improves the capability of
MPTCP by increasing the throughput of MPTCP. As shown
in Fig. 9b, eMPTCP improves the throughput of MPTCP by
23.1% on average. This improvement is realized by removing
the redundant paths which potentially cause congestion on the
bottleneck link.
Use case 4: Traffic scheduling. Traffic scheduling is known
to significantly impact the MPTCP performance, especially in
the heterogeneous network environment. When MPTCP sends
the packets on paths with different throughputs and delays,
packets arriving at the receiver could be out-of-order. In such
a case, packets sent from the fast paths have to wait for packets
sent from the slow paths. Further, the re-ordering of packets
also incurs extra costs. Addressing this issue, many traffic
schedulers for MPTCP have been proposed. Among many of
them, we implement a simple version based on the design of
ECF [9], which allows for determining the sending rate on
all subflows periodically at the interval of 100ms. The rate
decision is defined by a vector < r1, r2, ..., ri >, where ri
represents the rate of ith subflow.

In this test case, we establish two paths, one of which is

This article has been accepted for publication in IEEE/ACM Transactions on Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNET.2024.3469396

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

set with a latency of 20ms, and the other is set with a latency
of 50ms, corresponding to a fast subflow and a slow subflow,
respectively. At each decision interval, the scheduler calculates
the rates on each path. Fig. 10a shows that such a traffic
scheduler can improve the throughput by at most 41.6% and
on average 30.9%. We further evaluate the effectiveness of this
scheduler with a large number of concurrent flows. As Figure
10b shows, the scheduler can improve the average throughput
by 16.8% in this case.

VI. RELATED WORK

Currently, there are a lot of efforts to enhance MPTCP,
such as path management, traffic scheduler, etc. For example,
as traffic scheduling has a significant impact on the per-
formance of MPTCP, Frmmgen et al. [8] proposed a high-
level programming model for MPTCP scheduler and built
a corresponding runtime environment in the kernel , which
enables application-aware scheduling. Zhang et al. [11] de-
veloped an adaptive scheduler based on deep reinforcement
learning to schedule multi-path traffic for different scenarios.
Cai et al. [15] presented an online learning-based method to
select multiple paths by learning the stochastic metrics of
the paths. ECF scheduler [9] was developed which makes
a prediction about transfer time through subflows and sends
packets through the path with an earlier completion time. For
path management, Hesmans et al. developed MPTCP path
management Netlink [12] and Socket [14] API, which enables
userspace and application-oriented path management. Zongor
et al. [16] pointed out that when the subflows of MPTCP are
not fully disjoint, the throughput will be limited by bottleneck
links. Gao et al. [17] calculated the optimal path set and chose
the optimal number and subflow-path assignment for MPTCP
connections. Many existing works have tried to extend MPTCP
in various scenarios, Franck et al. [19] utilized MPTCP to
seamlessly migrate live VMs across WAN boundaries. Xu
et al. [20] developed a congestion control algorithm that
detects path-sharing by comparing RTT and ECN of different
subflows.

Despite the promising usage of MPTCP, extending MPTCP
is not easy. Existing methods either modify the kernel imple-
mentation of MPTCP, which involves considerable engineering
efforts and may introduce security flaws, or control MPTCP
via userspace tools such as mptcpd [25], which suffers from
highly-restricted functionalities. Based on eBPF, Viet-Hoang
Tran and Olivier Bonaventure [27] take the first step toward
extending network protocols with eBPF. However, they only
reveal the implementing details of an enhanced MPTCP path
management, challenges still remain to fully extend MPTCP
for more real use cases.

Beyond MPTCP, there are also many works that exploit
the multipath feature of networks. For example, Gurtov et
al. [39] developed a multipath scheduler called mHIP laying
between IP and HIP layer which avoids many common issues
in multipath environments, such as address hijacking, and
vulnerability to address changing. Ashkan et al. [40] designed
a userspace multipath system called MPFlex which runs as a
transport layer proxy and provides multipath services for TCP

and UDP traffic. De Coninck et al. [21] proposed Multipath
QUIC which enables QUIC with the multipath transmission.
Although these works are not directly based on MPTCP, their
designs can inspire the extensions of MPTCP and can be
further facilitated by eMPTCP.

VII. FUTURE WORK

Extending eMPTCP in the mobile environment. MPTCP
has been most widely used on mobile devices to aggregate
the bandwidth of heterogeneous paths or realize seamless
handovers between networks. Therefore, extending MPTCP in
the mobile environment is a potentially significant scenario.
Since eMPTCP is implemented based on eBPF which has
been supported since kernel version 4.9 and Android 9 [41],
we believe that eMPTCP is also feasible to deploy on mobile
devices. A future plan of eMPTCP is to evaluate the feasibility
and robustness when deploying on mobile devices.

Extending to support more transport protocols. While the
design of eMPTCP mainly targets at MPTCP, we believe that
it is capable of supporting more general transport protocols
with the help of XDP and TC. By enabling inspection on
network packets, eMPTCP combines the view from the differ-
ent layers of protocols, yielding more insights into cross-layer
innovations. The implementation of eMPTCP also encourages
a practical way to encapsulate more verifier acceptable, robust
eBPF helper functions.

Support extensions from different developers. eMPTCP was
initially designed for use by a single trusted developer, without
taking into account potential conflicts that may arise from
multiple developers. Ensuring compatibility among diverse
extensions is a pivotal concern in numerous protocol designs,
such as the concern in PQUIC [42]. Thus, we believe this as
a promising direction for future exploration.

VIII. CONCLUSION

In this paper, we have presented eMPTCP, a framework that
enables to extend MPTCP with customized control policies.
eMPTCP is highly flexible and pluggable. Implemented based
on eBPF, eMPTCP benefits from the security and robustness
of the kernel development. We have demonstrated that sev-
eral representative MPTCP extensions can be easily imple-
mented with eMPTCP. Extensive experiments have shown that
eMPTCP incurs little overhead at the level of nanosecond with
negligible packet processing overhead.
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