
Supplementary material of eNetSTL
Bin Yang1, Dian Shen1∗, Junxue Zhang2∗, Hanlin Yang1, Lunqi Zhao1, Beilun Wang1,

Guyue Liu3, Kai Chen2
1Southeast University

2Hong Kong University of Science and Technology 3Peking Univeristy

1 Core Components in NFs
Here we provide a detailed list of the core components we
implemented in eBPF for these 35 representative works [1–
15, 17–23, 25–37].

1. Cuckoo Hash [26]: We implemented the data structure
query and insertion algorithms from section 2 of the
paper using eBPF. We report the performance of the
lookup algorithm. Specifically, during testing, we use a
padded 16-byte 5-tuple as the key because the cuckoo
hash is commonly employed as a connection table
in network forwarding functions. In the kernel imple-
mentation, we optimized performance using hardware-
assisted crc_hash and SIMD instruction-based full key
comparison.

2. Cuckoo Switch [37] We implemented the extended
Block Cuckoo Hash algorithm described in Section 2
of the paper as the key-value query operation using
eBPF. The specific implementation incorporates ap-
propriate modifications based on DPDK’s cuckoo hash
library [16]. In the kernel implementation, we opti-
mized performance using hardware-assisted crc_hash,
SIMD instruction-based full key comparison, and batch
signature comparison.

3. d-ary Cuckoo [13]: We implemented the insertion and
deletion algorithms for the d-ary Cuckoo Hash de-
scribed in section 3 using eBPF. The testing methodol-
ogy is similar to Cuckoo Hash. The kernel implemen-
tation utilizes SIMD parallel computing for optimizing
multiple hash functions.

4. SILT [18]: We implemented the Partial-key Cuckoo
hashing algorithm from Section 3.1 of the paper us-
ing eBPF. The specific implementation is referenced
from DPDK’s cuckoo hash lib, incorporating key ideas

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696094

from the paper. The testing methodology is the same
as for Cuckoo Hash. The kernel implementation uti-
lizes hardware-assisted crc_hash and SIMD full key
comparison for optimization.

5. NFD-HCS [21]:We attempted to implement the skiplist-
based L1.cache (Key value query) from Section 3.1 of
the paper using eBPF. However, due to eBPF’s lack of
support for non-contiguous memory, we were unable
to implement it.

6. Bloom Filter [4]: We implemented the classic Bloom
filter algorithm using eBPF as a membership test op-
eration. In specific tests, we used five-tuples as keys
to evaluate the performance of insertion and query
operations for a single flow. The kernel implementa-
tion was optimized using SIMD-based parallel hash
computation.

7. Summary Cache [12]: We implemented the memory
membership test operation based on the Counter Bloom
Filter, as described in Section V.C of the paper, using
eBPF. The kernel version of the implementation was
optimized using SIMD parallel hash calculations.

8. Cuckoo Filter [11]: We implemented the membership
test operation based on the Cuckoo Filter, as proposed
in Section 3 of the paper, using eBPF. Specifically, our
implementation covers Algorithm 1, Algorithm 2, and
Algorithm 3 from Section 3. We drew inspiration from
the Cuckoo Filter implementation in DPDK [16]. The
kernel version of our implementation leverages SIMD-
based parallel comparisons and hardware-assisted crc_hash
for optimization.

9. d-left BF [5]: We implemented the d-left Bloom Fil-
ter based on d-left hashing as proposed in Section 3
of the paper using eBPF. The kernel implementation
was optimized using hardware-assisted crc_hash and
SIMD-based parallel comparison.

10. Rank-Indexed [14]: We implemented the Bloom Filter
construction algorithm, which is based on Rand-index
hashing as proposed in Section 3 of the paper, for the
membership test operation using eBPF. Our implemen-
tation encompasses the data structure illustrated in
Figure 3 of the paper. The kernel implementation opti-
mizes performance through the utilization of hardware
POPCNT bitwise operations.

11. Blocked BF [27]: We implemented the Block Bloom
Filter algorithm described in Section 3 of the paper
using eBPF. The kernel implementation utilizes SIMD

1

https://doi.org/10.1145/3689031.3696094


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

parallel comparisons and parallel hash calculations for
optimization.

12. VBF [17]: We ported the multi-set membership test op-
eration based on a vector of Bloom filters from DPDK
to eBPF. The kernel implementation optimizes per-
formance by utilizing hardware FFS instructions and
hardware-assisted crc_hash.

13. Hypercut [31]: We implemented the search algorithm
of Hypercut mentioned in Section 5.2 in the data plane
using eBPF. According to the characteristics of this
algorithm, the decision tree is constructed in user space
and then directly written into the BPF map.

14. Efficut [34]: We implemented the search algorithm of
Efficut decision tree mentioned in Section 3 of the pa-
per using eBPF. We utilized BPF_MAP_TYPE_ARRAY-
_OF_MAPS to store multiple decision trees separated
by the algorithm.

15. TSS [32]: We implemented the Tuple Space Search
algorithm from Section 5 of the paper using eBPF. Sim-
ilar to OvS, we use Cuckoo Hash as the underlying
hash table. The kernel implementation employs SIMD-
based parallel comparisons and hardware-assisted
crc_hash for optimization.

16. Maglev [9]: We implemented the Consistent Hash-
ing algorithm from Section 3.4 of this paper using
eBPF. Since this algorithm is based on table query,
the calculation of table entries can be done in user
space, and the eBPF data path only needs to imple-
ment table lookup operations. This can be achieved
using BPF_MAP_TYPE_ARRAY or
BPF_MAP_TYPE_PERCPU_ARRAY easily just as the
implementation in Katran [24].

17. Beamer [25]: We implemented the stable hashing algo-
rithm from Section 4.1 of the paper using eBPF. Similar
to Maglev, stable hash is also a table-based load balanc-
ing algorithm, making it easily implementable with
eBPF. Additionally, since stable hash adds an extra
direction mapping, it can be implemented using the
BPF_MAP_TYPE_ARRAY_OF_MAP.

18. EFD [7]: We ported DPDK’s EFD, a load balancing li-
brary based on perfect hash, to eBPF. In the data path,
EFD involves only two hash calculations. The selec-
tion and update of the perfect hash functions for the
table are done in user space. We tested the lookup per-
formance of the eBPF implementation. For the kernel
implementation, we optimized the performance using
hardware-assisted crc_hash for optimization.

19. SpaceSaving [22]: We attempted to implement the
Stream Summary data structure for counting proposed
in Section 3.1 of this paper using eBPF, Stream Sum-
mary involves a significant number of pointer opera-
tions and non-contiguous memory, making it imprac-
tical for implementation in eBPF.

20. CSS [2]: We implemented the Compact Space Saving
(CSS) data structure from section III.B of the paper
using eBPF to achieve counting. We utilized Blocked
Cuckoo Hash as the static hash table for CSS. CSS
was deployed in the data path, and for each incoming
packet, we inserted it into CSS to test insertion per-
formance. In the kernel implementation, we employed
SIMDparallel comparisons and hardware-assisted crc_hash
for optimization.

21. HSS [23]: We implemented the Hierarchical Heavy
Hitters based on the Space Saving algorithm from Sec-
tion 3 of the paper using eBPF. Specifically, for the
Space Saving algorithm, we adopted the pointless CSS
data structure instead of Stream Summary. In the ker-
nel implementation, we optimized the CSS hash table
indexing using SIMD.

22. RHSS [3]: We implemented Algorithm 1, Randomized
HHH, from the paper using eBPF for counting. Addi-
tionally, we tested the insertion performance of RHHH.
In the eBPF implementation, we utilized
bpf_prandom_get_u32 for generating random num-
bers. Meanwhile, in the kernel implementation, we
optimized it using a GEO random number pool.

23. Tiny Table [8]: We implemented the Tiny Table data
structure described in Section 3.1 of the paper, specif-
ically the structures depicted in Figures 1, 2, and 3,
using eBPF. We tested its insertion performance in the
eBPF data path. In the kernel implementation, we op-
timized bit searches using FFS hardware instructions
and improved bucket lookup with SIMD instructions.

24. Memento [1]: We implemented the Memento algo-
rithm proposed in Section 4.1 of the paper using pure
eBPF to support counting with a sliding window. In
the eBPF implementation, we used bpf_prandom_-
get_u32 for generating randomnumbers. In the kernel
implementation, we optimized it using a GEO random
number pool. Additionally, we utilized SIMD paral-
lel comparisons to optimize the underlying CSS data
structure used by Memento.

25. HeavyKipper [36]: We implemented the HeavyKeeper
data structure from Section III.B of the paper using
pure eBPF. In the data plane, we tested its insertion per-
formance using the five-tuple as the key. In the kernel
implementation, we optimized the overall performance
of HeavyKeeper using hardware-assist crc_hash and
SIMD-based parallel comparisons.

26. Count-min Sketch [6]: We implemented the Count-
Min Sketch algorithm from Section 3 of the original
paper using eBPF. In the eBPF data path, we tested the
algorithm’s insertion performance using the five-tuple
of packet data as keys. In the kernel implementation,
we optimized it using SIMD parallel hash computa-
tions.

2



Supplementary material of eNetSTL EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

27. UnivMon Sketch [20]: We implemented Algorithm 1,
the UnivMon Online Sketching Step, from Section 4.2
of the paper using eBPF. We used Count-Min as the
underlying L2-Heavy-Hitter Sketch. In the eBPF im-
plementation, we used a static hash table and a binary
heap to maintain the Top-K. In the kernel implementa-
tion, we optimized performance using SIMD parallel
hash computations. When K is set to a small value,
we used SIMD parallel comparisons and Reduce Min
to implement the heap; otherwise, we used the same
approach as in eBPF.

28. Sketch Visor [15]: We implemented the sketch visor’s
fast path and slow path in Section 3 of the paper using
eBPF. Specifically, we utilized the Count-min sketch
as the slow path. Additionally, we implemented Al-
gorithm 1 in Section 4.2, i.e., the fast path of Sketch
Visor, based on the hash table provided by eBPF. In the
kernel implementation, we optimized the slow path by
employing SIMD parallel hash calculations. The fast
path was optimized by using a static hash table and
employing SIMD parallel comparisons.

29. Elastic Sketch [35]: We implemented the basic algo-
rithm of Elastic Sketch in Section 3.1 of the paper using
eBPF, specifically the heavy part and light part as de-
picted in Figure 1. We adopted the original paper’s
approach of using Count Min as the light part. In the
kernel implementation, we utilized SIMD parallel cal-
culations for the light part. Following the methodology
outlined in Section 4.3 of the paper, we employed static
arrays along with SIMD parallel comparisons to im-
plement the heavy part.

30. Nitro Sketch [19]: We implemented the core algorithm
Nitro Sketch from Section 4.1 of the paper using eBPF.
Specifically, in eBPF, we employed bpf_prandom_get_u32
to determine whether to update a particular row, as
illustrated in Figure 4 in the origin paper. In the kernel
implementation, we followed the approach outlined
in Figure 7(b) of the paper, utilizing a GEO random
number pool and incorporating hardware-assisted crc
hash to accelerate hash calculations.

31. Eiffel [29]: We attempted to implement the priority
queue algorithm cFFS from Section 3.1 of the paper
using eBPF. Although the current eBPF does not sup-
port packet queuing, we can achieve this by leveraging
existing patches that have not yet been merged into
the kernel mainline. In the eBPF implementation, we
referred to the implementation of the software FFS
instruction in Linux, using several bitwise AND op-
erations to achieve the functionality of FFS. In the
kernel implementation, we optimized the performance
of cFFS by using hardware-based FFS instructions.

32. PCQ [30]: We implemented the core data structure, a
calendar queue, used for packet queuing in the Section

3 of the paper using eBPF. In the eBPF implementa-
tion, we utilized eBPF linked lists and BPF arrays to
implement the calendar queue.

33. Carousel [28]: We implemented the core queuing al-
gorithm, the time wheel described in Section 4 of the
paper using eBPF. For the implementation of the time
wheel, we referred to the time wheel implementation
in Linux kernel. In the eBPF implementation, we used
BPF linked lists and BPF arrays. Additionally, we uti-
lized bpf_ktime_get_ns to obtain timestamps.

34. Non-cascade Tw [33]: We ported the non-cascading
time wheel algorithm from Linux kernel to eBPF. We
utilized eBPF linked lists and software-simulated bit-
wise operations to implement the non-cascading time
wheel. In the kernel implementation, we optimized it
using hardware-based FFS instructions.

35. FQ/pacing [10]: We attempted to implement the packet
queuing algorithm based on a red-black tree in Linux
using eBPF. However, due to the lack of support for
non-contiguous memory in eBPF, it is not feasible to
implement a red-black tree within eBPF.

References
[1] Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik,

and Erez Waisbard. 2018. Memento: Making SlidingWindows Efficient
for Heavy Hitters. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT ’18).
Association for Computing Machinery, New York, NY, USA, 254–266.
https://doi.org/10.1145/3281411.3281427

[2] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016.
Heavy hitters in streams and sliding windows. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Commu-
nications. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524364

[3] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli, and
Erez Waisbard. 2017. Constant Time Updates in Hierarchical Heavy
Hitters. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). Association for Com-
puting Machinery, New York, NY, USA, 127–140. https://doi.org/10.
1145/3098822.3098832

[4] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Commun. ACM 13, 7 (jul 1970), 422–426. https:
//doi.org/10.1145/362686.362692

[5] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,
and George Varghese. 2006. An improved construction for counting
bloom filters. In Algorithms–ESA 2006: 14th Annual European Sym-
posium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14.
Springer, 684–695.

[6] Graham Cormode and S. Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.
12.001

[7] DPDK. Accessed Jan. 2024. Elastic Flow Distributor Library. https:
//doc.dpdk.org/guides/prog_guide/efd_lib.html. (Accessed Jan. 2024).

[8] Gil Einziger and Roy Friedman. 2016. Counting with tinytable: Ev-
ery bit counts!. In Proceedings of the 17th International Conference on
Distributed Computing and Networking. 1–10.

[9] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A fast and reliable
software network load balancer. In 13th {USENIX} Symposium on

3

https://doi.org/10.1145/3281411.3281427
https://doi.org/10.1109/INFOCOM.2016.7524364
https://doi.org/10.1145/3098822.3098832
https://doi.org/10.1145/3098822.3098832
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doc.dpdk.org/guides/prog_guide/efd_lib.html
https://doc.dpdk.org/guides/prog_guide/efd_lib.html


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

Networked Systems Design and Implementation ({NSDI} 16). 523–535.
[10] Eric Dumazet. Accessed Jan. 2024. pkt_sched: fq: Fair Queue packet

scheduler. https://lwn.net/Articles/564825/. (Accessed Jan. 2024).
[11] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzen-

macher. 2014. Cuckoo Filter: Practically Better Than Bloom. In
Proceedings of the 10th ACM International on Conference on Emerg-
ing Networking Experiments and Technologies (CoNEXT ’14). Associ-
ation for Computing Machinery, New York, NY, USA, 75–88. https:
//doi.org/10.1145/2674005.2674994

[12] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. 2000. Summary cache: a
scalable wide-areaWeb cache sharing protocol. IEEE/ACMTransactions
on Networking 8, 3 (2000), 281–293. https://doi.org/10.1109/90.851975

[13] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2005.
Space efficient hash tables with worst case constant access time. Theory
of Computing Systems 38, 2 (2005), 229–248.

[14] Nan Hua, Haiquan Zhao, Bill Lin, and Jun Xu. 2008. Rank-indexed
hashing: A compact construction of Bloom filters and variants. In
2008 IEEE International Conference on Network Protocols. 73–82. https:
//doi.org/10.1109/ICNP.2008.4697026

[15] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. 2017. SketchVisor: Robust Network Measure-
ment for Software Packet Processing. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 113–126.
https://doi.org/10.1145/3098822.3098831

[16] Intel. Accessed Jan. 2024. Hash Library. https://doc.dpdk.org/guides/
prog_guide/hash_lib.html. (Accessed Jan. 2024).

[17] Intel. Accessed Jan. 2024. Membership Library. https://doc.dpdk.org/
guides/prog_guide/member_lib.html. (Accessed Jan. 2024).

[18] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
2011. SILT: AMemory-Efficient, High-Performance Key-Value Store. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP ’11). Association for Computing Machinery, New York,
NY, USA, 1–13. https://doi.org/10.1145/2043556.2043558

[19] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust
and General Sketch-Based Monitoring in Software Switches. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 334–350. https://doi.org/10.1145/3341302.3342076

[20] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM ’16). Association for Comput-
ing Machinery, New York, NY, USA, 101–114. https://doi.org/10.1145/
2934872.2934906

[21] Rodrigo B. Mansilha, Lorenzo Saino, Marinho P. Barcellos, Massimo
Gallo, Emilio Leonardi, Diego Perino, and Dario Rossi. 2015. Hi-
erarchical Content Stores in High-Speed ICN Routers: Emulation
and Prototype Implementation. In Proceedings of the 2nd ACM Con-
ference on Information-Centric Networking (ACM-ICN ’15). Associa-
tion for Computing Machinery, New York, NY, USA, 59–68. https:
//doi.org/10.1145/2810156.2810159

[22] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Effi-
cient computation of frequent and top-k elements in data streams. In
Database Theory-ICDT 2005: 10th International Conference, Edinburgh,
UK, January 5-7, 2005. Proceedings 10. Springer, 398–412.

[23] Michael Mitzenmacher, Thomas Steinke, and Justin Thaler. 2012. Hi-
erarchical heavy hitters with the space saving algorithm. In 2012 Pro-
ceedings of the Fourteenth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM, 160–174.

[24] Nikita Shirokov, Ranjeeth Dasineni. Accessed May. 2024.
Open-sourcing Katran, a scalable network load balancer.
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-

katran-a-scalable-network-load-balancer/. (Accessed May. 2024).
[25] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin

Raiciu. 2018. Stateless datacenter load-balancing with beamer. In 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18). 125–139.

[26] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/j.
jalgor.2003.12.002

[27] Felix Putze, Peter Sanders, and Johannes Singler. 2007. Cache-, hash-
and space-efficient bloom filters. In Experimental Algorithms: 6th Inter-
national Workshop, WEA 2007, Rome, Italy, June 6-8, 2007. Proceedings
6. Springer, 108–121.

[28] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic
Shaping at End Hosts. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). As-
sociation for Computing Machinery, New York, NY, USA, 404–417.
https://doi.org/10.1145/3098822.3098852

[29] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa
Ammar, Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and
Flexible Software Packet Scheduling. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 17–32. https://www.usenix.org/conference/
nsdi19/presentation/saeed

[30] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
2020. Programmable Calendar Queues for High-speed Packet Sched-
uling. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 685–
699. https://www.usenix.org/conference/nsdi20/presentation/sharma

[31] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003.
Packet classification using multidimensional cutting. In Proceedings
of the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, August 25-
29, 2003, Karlsruhe, Germany, Anja Feldmann, Martina Zitterbart, Jon
Crowcroft, and David Wetherall (Eds.). ACM, 213–224. https://doi.org/
10.1145/863955.863980

[32] V. Srinivasan, S. Suri, and G. Varghese. 1999. Packet Classification Us-
ing Tuple Space Search. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’99). Association for Computing Machinery, New York, NY,
USA, 135–146. https://doi.org/10.1145/316188.316216

[33] Thomas Gleixner. Accessed Jan. 2024. timer: Refactor the timer
wheel. https://lore.kernel.org/lkml/20160617121134.417319325@
linutronix.de/. (Accessed Jan. 2024).

[34] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010.
EffiCuts: optimizing packet classification for memory and through-
put. In Proceedings of the ACM SIGCOMM 2010 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munications, New Delhi, India, August 30 -September 3, 2010, Shiv-
kumar Kalyanaraman, Venkata N. Padmanabhan, K. K. Ramakrish-
nan, Rajeev Shorey, and Geoffrey M. Voelker (Eds.). ACM, 207–218.
https://doi.org/10.1145/1851182.1851208

[35] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive
and Fast Network-Wide Measurements. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY,
USA, 561–575. https://doi.org/10.1145/3230543.3230544

[36] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shi-
gang Chen, and Xiaoming Li. 2019. HeavyKeeper: An Accurate Al-
gorithm for Finding Top- 𝑘 Elephant Flows. IEEE/ACM Transactions
on Networking 27, 5 (2019), 1845–1858. https://doi.org/10.1109/TNET.
2019.2933868

4

https://lwn.net/Articles/564825/
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/ICNP.2008.4697026
https://doi.org/10.1109/ICNP.2008.4697026
https://doi.org/10.1145/3098822.3098831
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2810156.2810159
https://doi.org/10.1145/2810156.2810159
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/3098822.3098852
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/316188.316216
https://lore.kernel.org/lkml/20160617121134.417319325@linutronix.de/
https://lore.kernel.org/lkml/20160617121134.417319325@linutronix.de/
https://doi.org/10.1145/1851182.1851208
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1109/TNET.2019.2933868


Supplementary material of eNetSTL EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[37] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G.
Andersen. 2013. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’13). As-
sociation for Computing Machinery, New York, NY, USA, 97–108.
https://doi.org/10.1145/2535372.2535379

5

https://doi.org/10.1145/2535372.2535379

	1 Core Components in NFs
	References

