
eNetSTL: Towards an In-kernel Library for
High-Performance eBPF-based Network Functions

Bin Yang1, Dian Shen1∗, Junxue Zhang2∗, Hanlin Yang1, Lunqi Zhao1, Beilun Wang1,
Guyue Liu3, Kai Chen2

1Southeast University
2Hong Kong University of Science and Technology 3Peking Univeristy

Abstract
Using extended Berkeley Packet Filter (eBPF) to implement
networking functions (NFs) has been a promising trend for
modern network infrastructure. In this paper, we endeavor to
implement 35 representative NFs with eBPF, but encounter
inherent problems of either incomplete functionality or per-
formance degradation of up to 49.2%. Conventional solutions
like modifying the eBPF infrastructure or implementing func-
tions directly in the kernel can lead to intrusive and unstable
modifications.

To address these challenges, we present eNetSTL, the first
in-kernel library for eBPF-based network functions. At its
core, eNetSTL identifies shared performance-critical behav-
iors among the 35 NFs, and abstracts these behaviors into a
minimal and stable set of in-kernel components (containing a
memory wrapper, three algorithms, and two data structures).
It reduces interaction overheadwith eBPF andmitigate safety
risks by using Rust and a metadata-assisted verifier. By do-
ing so, eNetSTL minimizes intrusions into the kernel space,
ensuring stability and compatibility with current and future
requirements of eBPF-based NFs. We demonstrate the capa-
bilities of eNetSTL by presenting three real-world use cases
that leverage its comprehensive functionalities. Extensive
testbed experiments on seven categories of NFs show that
their implementation with eNetSTL outperforms the eBPF
counterparts by up to 1.8×, in terms of packet processing
rate.

CCS Concepts: • Networks→Middle boxes / network
appliances; • Software and its engineering → Software
libraries and repositories.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696094

Keywords: Network functions, eBPF, Performance profiling,
In-kernel library
ACM Reference Format:
Bin Yang, Dian Shen, Junxue Zhang, Hanlin Yang, Lunqi Zhao,
Beilun Wang, Guyue Liu and Kai Chen. 2025. eNetSTL: Towards
an In-kernel Library for High-Performance eBPF-based Network
Functions. In Twentieth European Conference on Computer Sys-
tems (EuroSys ’25), March 30–April 3, 2025, Rotterdam, Netherlands.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3689031.
3696094

1 Introduction
Software network functions (NFs) are crucial components of
modern network infrastructure. For example, in the cloud
environment, data plane communications between virtual
nodes require virtual switches, virtual routers, and other net-
work functions, where their efficient operations are essential
for ensuring the high performance and reliability of network
services. A recent trend is to implement these network func-
tions using the extended Berkeley Packet Filter (eBPF), as
evidenced by existing research [1, 29, 51–54, 62, 79], open-
source projects [14, 39, 57], and the deployment of eBPF-
based NFs in production by well-known companies such
as Meta [57], Google Cloud [31], and CloudFlare [49]. This
trend can be attributed to eBPF’s flexibility, maintainability,
high performance, and good integration into cloud infras-
tructure [7, 60, 73].
In this paper, we intensively survey 35 representative

works [3, 5, 6, 8, 10, 15, 20, 22–27, 34–36, 44–47, 50, 55, 58, 59,
61, 63, 64, 66–68, 72, 74, 80–82] covering various categories
of popular NFs, including key-value query, membership test,
packet classification, load balancing, counting, sketching,
and queuing. We attempt to implement their core opera-
tions1 using eBPF. However, we encounter two problems: (1)
Incomplete functionalities: it is unable to implement three
of them due to the inherent programming limitations in the
non-contiguous memory of eBPF. (2) Performance degrada-
tion: while 28 operations can be implemented using eBPF,
they suffer from significant performance degradation, reach-
ing up to 49.2%, compared to their in-kernel counterparts.
For instance, the absence of SIMD instructions results in a
1For example, in Cuckoo Switch [82], we implement the FIB lookup using
eBPF. For interested readers, we provide details of our eBPF implementations
in the supplementary material.

https://doi.org/10.1145/3689031.3696094
https://doi.org/10.1145/3689031.3696094
https://doi.org/10.1145/3689031.3696094

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

21.5-29.8% performance reduction in key-value query and a
19.2-49.2% decrease in sketching. Additionally, the overhead
from eBPF safety mechanisms leads to a performance decline
of 14.8%-31.6% in queuing.

There are two solutions for the aforementioned problems.
However, they either cause substantial intrusion into the
kernel code base or suffer from frequent updates of the ker-
nel modules, compromising the gain of eBPF technology.
Specifically, the first solution is to redesign the eBPF in-
frastructure [28, 38], including extensions to the eBPF ISA
and modifications to the verifier [38]. However, it causes a
dramatic intrusion into the kernel and presents challenges
for prompt and practical deployment to address immedi-
ate community needs [52]. For example, expanding the eBPF
instruction set requires modifying the JIT (just-in-time) com-
piler of as many as 14 architectures [4], and modifying the
eBPF verifier raises concerns regarding the correctness of the
verifier itself [65]. The second solution is to implement each
NF as a kernel module and integrate them into the kernel
as needed. However, with the existence of large amounts
of NFs and their variants and their rapid advancements in
the network community, the kernel experiences instability
due to the frequent replacement of kernel modules, posing
challenges in terms of maintainability.
In this paper, we ask: can we achieve comprehensive func-

tionalities and high performance for eBPF-based network func-
tions without compromising eBPF’s advantages of flexibility
and low intrusion? To answer this question, we dive into
the design of 35 representative works and observe that they
share six similar behaviors, which considerably determine
the overall performance (§3), thus presenting opportunities
for answering the question.
Based on the above observation, we take the initiative

in this direction by proposing eNetSTL, the first standard
in-kernel library for eBPF-based networking functions2. It
is designed to be spatially minimal—minimizing intrusion
into the kernel—and temporally stable—maintaining kernel
stability to accommodate current and future network func-
tions. The core design of eNetSTL lies in providing appropri-
ate abstractions of performance-critical operations of NFs ,
considering the interaction overhead with eBPF while not
compromising its safety guarantee. Specifically, to support
non-contiguous memory in eBPF without compromising the
safety guarantee, we develop a memory wrapper with proxy-
based memory management and lazy safety checking (§4.2).
Second, to support high-performance operations, we trade
excessive generality for improved performance by design-
ing higher-level interfaces that reduce interaction overhead
while still satisfying the requirements of involved network
functions (§4.3). Finally, to mitigate the safety risks associ-
ated with using the in-kernel library, we implement eNetSTL

2eNetSTL for eBPF-based network functions can be analogously compared
to the Standard Template Library (STL) for C++

in Rust to enhance memory safety and conduct a targeted
review of the remaining unsafe code for other critical safety
properties, including the correctness of safe abstractions and
safe termination. Additionally, we leverage metadata to as-
sist the verifier in ensuring safe interactions between eBPF
and eNetSTL. While all 35 works have already benefited
from eNetSTL, we believe that eNetSTL could also be applied
to new research works in the future since they may share
many similarities with these 35 representative works.

We then demonstrate the comprehensive functionality of
eNetSTL via case studies. Due to space limitations, we select
three representative case studies to illustrate the detailed
usage of eNetSTL for eBPF-based network functions. Further-
more, to compensate the small set of detailed case studies, we
perform testbed experiments with 11 network functions, cov-
ering all types in Table 1. In detail, to demonstrate that eNet-
STL enables network functions requiring non-contiguous
memory, we implement the key-value query operation based
on skip-list in NFD-HCS [47] using the memory wrapper.
Evaluation results show that eNetSTL not only fully enables
this function but achieves comparable performance as the
kernel implementation with a gap less than 8.54%. More-
over, the evaluations of the remaining network functions
demonstrate that eNetSTL can support high-performance
NFs through its designed algorithms and data structures.
Experimental results show that eNetSTL achieves 14.6% to
75.4% higher packet processing rates over its eBPF coun-
terparts. And the performance of eNetSTL is close to the
in-kernel implementation with a negligible gap of 3.42% on
average and 5.24% at most.

As a final note, while eBPF technology may advance in the
future, in this paper, we target to provide a plug-and-play
library that can immediately benefit the community. More-
over, we believe, for future works, if not directly applicable
with eNetSTL, our idea of extracting shared performance-
critical behaviors should also be beneficial. All source codes
of eNetSTL and the use cases are open-sourced in GitHub3.

2 Background and Motivation
2.1 eBPF-based Network Functions
Software network functions plays a significant role in mod-
ern networking infrastructure. We survey seven categories
of NFs that are widely utilized in practice, including key-
value query [27, 44, 47, 59, 82], membership test [8, 10, 25,
26, 34, 36, 61], packet classification [67, 68, 74], load bal-
ancing [20, 23, 58], counting [3, 5, 6, 22, 50, 55, 81], sketch-
ing [15, 35, 45, 46, 80], and queuing [24, 63, 64, 66, 72]. To
satisfy various requirements, how to efficiently and flexibly
implement these functions on demand is a key problem for
today’s networking infrastructure.

As an emerging kernel extension technology, the extended
Berkeley Packet Filter (eBPF) combined with in-kernel hooks
3https://github.com/chonepieceyb/eNetSTL

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

such as XDP [33, 76] and TC is a promising solution. Net-
work functions implemented with eBPF are widely deployed
in production by well-known companies [7, 31, 49, 57], be-
coming fundamental building blocks in today’s cloud infras-
tructure [7]. For example, Meta put eBPF into production at
scale with its load balancer project Katran [57] and Google
Cloud currently uses an eBPF-based network dataplane [31].
Beyond that, there are many research [1, 29, 51–54, 62, 79]
and open-source projects [14, 39, 57], which implement net-
work functions based on eBPF. The trend towards eBPF is
due to its significant advantages. eBPF integrates efficiently
with current cloud ecosystems. For instance, in intra-host
container communication, the in-kernel XDP data path out-
performs DPDK datapath in OvS [73]. Additionally, eBPF
supports high-performance packet processing without satu-
rating the CPU, enabling NF and non-NF applications to run
on the same device without performance penalties brought
by kernel-bypass solution (e.g. DPDK) [57, 60, 62]. Moreover,
eBPF allows dynamic loading of user code for safe execution
without kernel source modifications or frequent updates, en-
hancing maintainability and flexibility, and enabling faster
development and deployment of demanding network func-
tions [53].

To implement NFs using eBPF, users develop customized
programs using the high-level C language and utilize the
Clang/LLVM toolchain to compile them into eBPF byte-
code. Subsequently, users load these bytecode into the kernel
through system calls. During the loading process, the eBPF
verifier conducts static analysis on the bytecode, ensuring
their safety when running NFs in the kernel. The current
eBPF verifier adopts a very strict rule and will reject any code
that violate the rules. We suggest interested readers refer
to the paper [77] for more information about the verifier.
Upon successful verification, the eBPF program is Just-In-
Time (JIT) compiled into machine-specific instructions and
is attached dynamically to a specific hook, such as the XDP
hook, for efficient execution.

2.2 Problems Identified
In this paper, we take the initiative to implement the core
operations of the 35 real-world NFs using eBPF. However, we
encounter two significant problems in our trial. First, three
of them cannot be implemented with eBPF due to inherent
programming limitations (P1). Second, 28 of them exhibit per-
formance degradation ranging from 14.8% to 49.2% compared
to in-kernel implementation due to various factors, such as
the absence of specific instructions in the eBPF ISA (P2).
Only four of them can be implemented using eBPF with-
out performance degradation. Worth noting, our pure-eBPF
implementations leverage existing eBPF foundational mecha-
nisms (e.g., BPF map [70] and BPF helper [71]) and advanced
ones (e.g., BPF kfunc [69] and BPF kptr [17]). Table 1 sum-
marizes the 35 works along with our identified problems

in their eBPF implementation. We then provide a detailed
explanation as follows.
P1: Incomplete functionalities. eBPF imposes strict limi-
tations on the use of non-contiguous memory, preventing
the implementation of core components of certain NFs, such
as key-value query based on skip-list [47] and queuing [24]
based on red-black tree4. Using non-contiguous memory
needs support for a variable number of dynamic memory to
be persisted for later use. Despite recent Linux kernels [40]
(version 6.1 or later) supporting allocating dynamic mem-
ory and persisting it into a BPF map, the verifier enforces a
predefined and fixed number of dynamic memories that can
be persisted. Thus, non-contiguous memory is unattainable
in the existing eBPF due to the limitation of no support for
variable dynamic memories.
P2: Performance degradation. Firstly, the eBPF RISC in-
struction set lacks support for specific instructions, includ-
ing SIMD (Single Instruction, Multiple Data) instructions
and bit manipulation instructions, resulting in performance
degradation. For example, in sketching, the absence of SIMD
instructions may result in a 49.2% performance degradation
due to inefficient computation of multiple hash functions.
Additionally, the absence of bit manipulation instructions in
Eiffel [64], which relies on the FFS (find the first set) instruc-
tion for rapid queuing, results in performance degradation of
14.8%. Secondly, the safety mechanisms of eBPF require cou-
pling between BPF link lists and BPF spin-locks, notably im-
pacting NFs utilizing link lists to store entries, such as the per-
formance degradation of 27.1% in Carousel [63]. Lastly, the
invocation of eBPF helpers, such as bpf_get_prandom_u32,
leads to a 46.6% performance decrease on average when used
on a per-packet basis [3, 6, 52].

2.3 Conventional Solutions & Their Problems
To address the above problems, two conventional solutions
can be considered. The first solution is modifying the overall
architecture of eBPF, for example, extending the instruction
set of eBPF, enhancing the verifier, introducing new runtime
and language-level safety mechanisms [38], and decoupling
the verification process from kernel to user space [28]. How-
ever, this approach is impractical due to its extensive mod-
ifications to the kernel. For instance, expanding the eBPF
instruction set requires modifications to the architecture-
specific JIT (just-in-time) compiler within the kernel code-
base, currently spanning up to 14 hardware architectures.
Furthermore, extending the instruction set mandates modifi-
cations to the verifier’s code, given that the verifier conducts
validation at the level of eBPF instructions. Nevertheless,
altering the verifier introduces new challenges in ensuring

4Currently, eBPF implements red-black tree [16] and link list [40] as kernel
utilities. However, it still cannot fulfill the demands for network functions
involving fully customized non-contiguous memory layouts, such as key-
value query based on skip list.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

NFs Representative works Performance degradation with eBPF
Key-value Query Cuckoo Hash [59], Cuckoo Switch [82], d-ary Cuckoo [27], SILT [44], NFD-HCS (×) [47] ↓ 21.55% − ∞,

Membership Test Bloom Filter [8], Summary Cache [26], Cuckoo Filter[25], d-left BF [10], Rank-Indexed [34], Blocked
BF [61], VBF [36] ↓ 15.7% − 27.7%

Packet Classification Hypercut (✓) [67], Efficut (✓) [74], TSS [68] ↓ 0 − 33.8%
Load Balancing Maglev (✓) [23], Beamer (✓) [58], EFD [20] ↓ 0 − 37.9%
Counting Space Saving (×) [50], CSS [5], HSS [55], RHSS [6], Tiny Table [22], Memento [3], HeavyKeeper [81] ↓ 25.6% − ∞
Sketching Count-min Sketch [15], UnivMon [46], Sketch Visor [35], Elastic Sketch [80], Nitro Sketch [45] ↓ 19.2% − 49.2%
Queuing Eiffel [64], PCQ [66], Carousel [63], Non-cascade TW [72], FQ/pacing (×) [24] ↓ 14.8% − ∞

Table 1. Investigation of representative works of NFs. When implementing their core components with eBPF, three of them
are unable to implement (indicated by ×), 28 of them suffer from performance degradation ranging from 14.8% to 49.2%, and
only four of them can be properly implemented (indicated by ✓).

Eiffel (O1)
VBF (O1, O2)

Cuckoo Switch (O6)

Count-min (O2)
UnivMon (O2)

Nitro Sketch (O4)

Cuckoo Filter (O2, O6)
Carousel (O4)

EFD (O2)0
25
50
75

100

 P
ro

po
rt

io
n(

%
) Shared behaviors Others

Figure 1. The performance proportion of observed common
behaviors in NFs, in terms of executing time, ranges from
20.6% to 65.4%. The O𝑥 represents the x-th observation.

the correctness of the modified verifier [65]. While theoret-
ically feasible, the proposal to redesign the safety and pro-
gramming architecture of eBPF is far from being practically
deployed because it may have negative impacts on numer-
ous existing eBPF-based network functions in the industry.
Beyond the significant intrusion into the kernel, modify-
ing the eBPF ISA could undermine eBPF’s portability across
multiple architectures, as not all of them support advanced
instructions. For instance, when a recent patch proposed
adding memory barrier instructions in the ISA, the commu-
nity prefers to implement the memory fence using bpf kernel
functions (kfuncs) [2].
The second solution involves implementing all

functionality-unattainable and performance-degrading NFs
as kernel modules and integrating them into the kernel.
However, integrating all NFs into the kernel will impose
a substantial intrusion into the kernel, while integrating
individual NFs on demand may result in frequent kernel
module replacements as demand changes, leading to
two problems of maintainability and safety. Firstly, such
per-NF per-LKM approach leads to an increased number
of modules. Each kernel module requires additional code
to ensure compatibility with different kernel versions,
which reduces maintainability [73]. Secondly, ensuring
kernel module safety requires additional code audits. The
per-NF per-LKM approach necessitates reviewing each
NF module individually, which increases safety risks since
kernel modules do not have an inherent safety guarantee.
Given the swift development in the networking community,
such “one module for each” method could render the kernel

quite unstable. In essence, this approach lacks flexibility and
generality to support future NFs.

3 Observations & Opportunities
In order to solve the problems without causing dramatic
intrusion and instability to the kernel, we further take a
deeper look at the design of 35 representative works (Table 1)
and observe that they share similar performance-critical
behaviors. This presents an opportunity for a new practical
solution that minimizes intrusion into the kernel to meet
immediate requirements from the community and keeps the
kernel stable for both current and future network functions.
We highlight six shared behaviors as follows.
1. Leveraging hardware bit instructions. Membership
test [34, 36], counting [22], sketching [46], and queuing [64,
72] operations share the behavior of encoding position infor-
mation compactly in bitmaps (i.e., 64-bit unsigned long) and
leverage hardware bit manipulation instructions (e.g., FFS
and POPCNT) for fast searching and locating to avoid costly
software-based queries. For example, in the queuing opera-
tions based on buckets of Eiffel [64], the information about
which bucket contains elements can be encoded into a bitmap
(i.e., bit i is set to one if buckets[i] contains elements), and
FFS (find the first Set) instruction can be leveraged to achieve
𝑂 (⌈ 𝑛

64 ⌉) (If a single ffs instruction operates on 64-bit data)
lookup time by locating the index of the first set bit of a u64
in three CPU cycles [64].
2. Using multiple hash functions. Key-value query [27],
membership test [8, 26], load balancing [20], counting [81],
and sketching [15, 35, 45, 46, 80] operations usemultiple hash
functions to distribute elements across different locations
and reduce collision. For example, given a key, Count-min
sketch [15] determines the locations of 𝑑 distinct counters
to be updated or aggregated with 𝑑 distinct hash. Moreover,
key-value query operation based on d-ary Cuckoo hash [27]
extends the original algorithm by utilizing 𝑑 hash functions
to determine the 𝑑 possible positions where a key might be
stored to reduce collision.
3. Building on fundamental data structures. Sketch-
ing [35, 80] and queuing [63, 64, 66, 72] operations are
built upon fundamental data structures, notably, the counter-
based heap and link list. For example, counter-based heaps

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

are commonly utilized to construct a fast path for handling
elephant flows in sketches [35, 80]. And constant-time queu-
ing operations [64, 66, 72, 75] are designed based on the
idea of bucket sorting and utilize linked lists to store the
underlying elements.
4. Updating based on a random number. Probabilistic
updating is shared in counting [3, 6] and sketching [45] oper-
ations to reduce the overhead of the update process. However,
generating per-packet random numbers using BPF helper
functions (i.e., bpf_get_prandom_u32) introduces significant
overhead.
5. Operating on non-contiguous memory spaces. Key-
value query [47], counting [50], and queueing [24] opera-
tions adopts non-contiguous memory. Given the dynamic
and bursty nature of network traffic, it is challenging to pre-
dict in advance the length of required memory for handling
dynamic flows. Over-allocating too much contiguous space
leads to memory waste while less-allocating results in packet
loss. In such scenarios, it is more appropriate to allocate and
address the memory on demand, resulting in non-contiguous
memory spaces.
6. Arranging multiple buckets in contiguous memory.
In some other scenarios, high-performance operations work
only on contiguous memory space, e.g., key-value query [44,
82], membership test [10, 25, 61], packet classification [68],
and counting [5, 6, 22, 55, 81]. They tend to arrange multiple
buckets in contiguous memory to facilitate fast counting or
handle collision. Typically, it iterates and compares a key
to the contents of the buckets (comparison) or locates the
first minimum/maximum value within the buckets (min/max
reduction). For example, in the key-value query operation
utilized in Cuckoo Switch [82], a blocked Cuckoo hash [19] is
used and its entries indexed by hashing are expanded into an
array with a fixed number of buckets to mitigate collisions.
Subsequently, the key or signature is compared with those
stored in each bucket to retrieve the value.

To quantitatively understand how these shared behaviors
impact the overall performance, we further conduct testbed
experiments to measure the execution time of these opera-
tions. We evaluate the throughput of network functions with
and without above behaviors under the same traffic. The
results are shown in Figure 1 and we observe that these op-
erations take a considerable portion of the overall execution
time, ranging from 20.6% to 65.4%. As a result, optimizing
these shared parts plays a key role in optimizing the end-to-
end performance of NFs, thus, worth investigating. However,
it’s challenging to optimize them in eBPF due to inherent
limitations of eBPF itself. Specifically, the absence of SIMD
instructions makes optimizing behaviors of using multiple
hash functions and arranging multiple buckets difficult. The
lack of bit manipulation instructions hinders optimization
for leveraging hardware bit instructions. The mandatory use
of linked lists and spin locks by eBPF affects the behavior
of using linked lists as a fundamental data structure, and

pkt

Network Functions
Based on eBPF

[…]
if (iph+1>data_end) return;
pkt.src = iph->src;
[…]

Count Min Cuckoo Hash

Packet Process

Data Structs

0 0 1 0Fast Locating

Random Update
p=0.1p=0.1

P1(No)

[…]
if (iph+1>data_end) return;
pkt.src = iph->src;
[…]

Data Structs

Yes

eNetSTL Library

Algorithms

Pointer Wrapper

Data Structures
N N N YKey Comparing

h1 h2
1 2 3 4Multiple Hashing

Pointer Routing

Bucket ListsP2

Design Patterns

Figure 2. eNetSTL Design. The eBPF-based NFs share six
identified performance-critical operations. eNetSTL abstracts
them into a library.

the costly eBPF helper function to generate random num-
bers impacts the behavior of updating based on a random
number. It should be noted that the behavior of operating
on non-contiguous memory spaces is not shown in Figure 1,
since eBPF does not support it and such issue restricts a con-
siderable amount of NFs to benefit from eBPF. As a result,
an alternative solution should be explored.

4 eNetSTL
Based on the above observations, we propose eNetSTL, the
first in-kernel library for eBPF-based network functions. On
one hand, eNetSTL aims to fully utilize the existing eBPF in-
frastructure, thus minimizing the intrusion to the kernel. On
the other hand, the components in eNetSTL are carefully ab-
stracted to achieve functional stability. When implemented
as a loadable kernel module, eNetSTL can be readily deploy-
able for existing 35 eBPF-based networking functions and
does not suffer from frequent updates when accommodat-
ing future requirements. Specifically, eNetSTL contains one
wrapper, three algorithms, and two data structures. The key
design lies in abstracting suitable components to simultane-
ously fulfill three crucial yet conflicting goals of generality,
performance and safety. In achieving the design goal, we
encounter two challenges here:
• How to support non-contiguous memory in eBPF without
compromising the safety guarantee provided by eBPF.

• How to design interfaces for specific algorithms and data
structures to minimize the interaction overhead with eBPF
while preserving generality.

• How to mitigate safety risks of eNetSTL itself, especially
concerning safe termination and memory safety.
To address the two challenges: (1) We develop a memory

wrapper with proxy-based memory management and lazy
safety checking to effectively support non-contiguous mem-
ory in eBPF. (2) To achieve high performance, we design
interfaces based on the generality required by network func-
tions, avoiding the use of low-level interfaces that introduce
interaction overhead but provide unnecessary generality.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

(3) We employ Rust and code review to enhance the safety
of individual APIs and facilitate safe interaction between
eBPF and eNetSTL by providing metadata to the verifier. The
design overview of eNetSTL is shown in Figure 2.

4.1 Background of Kfunc and Kptr
eNetSTL extensively leverages eBPF’s kfunc[69], kptr [17],
and associated verifier functionalities. This section provides
an overview of the technical background.

BPF Kernel Functions (kfunc) [69] allow new kernel func-
tionalities to be dynamically exposed to eBPF programs at
runtime via kernel modules, without needing recompila-
tion, kernel reinstalls, or system restarts. A crucial aspect
of exposing a kfunc is specifying its metadata. The static
verifier ensures safety by validating that eBPF programs ad-
here to the metadata defined by the developer, rather than
verifying the implementation of the kernel functions them-
selves. There are three specific scenarios: firstly developers
can specify which types of BPF programs are permitted to
use the kfunc. Secondly, developers can annotate function
arguments by suffixing variable names in the kfunc’s proto-
type. For example, the int val__k annotation as k ensures
that this argument is a constant int. Thirdly, developers can
annotate the kfunc itself to guide the verifier. For example,
annotating the kfunc with KF_RET_NULL indicates that the
pointer returned by the kfunc may be NULL. Hence, it forces
the user to do a NULL check on the pointer returned from
the kfunc before using it.
The BPF kernel pointer (kptr) [17] is an abstraction for

kernel resources to facilitate the safe interaction between the
eBPF program and kernel. eBPF verifier relies on the three
rules to prevent resource leaks and use-after-free issues in
eBPF programs. Firstly, eBPF programs use kfuncs (annotated
as KF_ACQUIRE) or special helper functions to allocate new
kptrs. Alternatively, they can retrieve existing kptrs from
BPF maps (using the bpf_kptr_xchg helper function). The
verifier marks the newly allocated or obtained kptr as invalid
until it is explicitly checked as not NULL. Secondly, only
valid kptrs can be safely passed to the kfunc as arguments or
be dereferenced to prevent use-after-free. Thirdly, to avoid
resource leaks, the eBPF verifier ensures that a kptr that
is allocated (or obtained from BPF maps) must be released
by helper function or kfunc annotated as KF_RELEASE (or
persisted to BPF maps using bpf_kptr_xchg).

4.2 Proxy-based and Lazy Memory Wrapper
The difficulties of using non-contiguous memory in eBPF-
based NFs stem from the need to support both unpredictable
length and persistent storage of the memory. To achieve this
without compromising the eBPF safety guarantee, we design
a memory wrapper employing proxy-based memory man-
agement and lazy safety checking. The memory wrapper
consists of a set of functions and APIs for usage in eBPF.

Proxy-based memory ownership management. The cur-
rent eBPF does not support the persisted and unpredictable
length of memory due to the requirement that the number of
dynamically allocated memories persisting in the BPF map
should be known in advance and fixed [17]5.

To address this limitation, eNetSTL utilizes a proxy-based
method, introducing a proxy data structure to manage
the ownership of all dynamically allocated memories. An
overview of its functionality is provided below. Initially, upon
each dynamic memory allocation, the ownership of the mem-
ory is transferred to the proxy for centralized management.
Subsequently, we store the proxy in a BPF map, ensuring the
persistence of all memories it manages. This method enables
the persistent storage of a variable number of memories in
the BPF map through the proxy data structure, overcoming
the previously mentioned limitations. Additionally, we facili-
tate non-contiguous memory access by establishing relation-
ships between twomemories. These relationships are created
using the connect6 function (e.g., A->next=B) and released
using the disconnect function (e.g., A->next=NULL). Assum-
ing a relationship exists between two memories, the light-
weight get_next7 function allows us to access the subse-
quent memory based on the preceding one (e.g., B=A->next).

Although promising, such method introduces a new safety
issue of use-after-free. The reason is that our method decou-
ples the relationships between memories and their owner-
ship, which results in the problem that releasing one memory
does not lead to the release of the connected ones, as own-
ership belongs to the proxy data structure. For example, an
eBPF-based network functions using two dynamic memories,
A and B, that are connected (i.e., A->next=B). In a specific op-
eration, if we do not disconnect B’s relationship with A (i.e.,
A->next=NULL) before releasing B, a subsequent operation
that directly accesses the next memory of A (i.e., *(A->next))
may trigger a use-after-free issue, ultimately leading to a
kernel crash.
Lazy safety checking. To avoid the use-after-free issue, a
straightforward approach involves checking the validity of
the relationship before each memory access using get_next.
Such validation can be accomplished by maintaining a hash
table that stores all valid relationships. However, this method
entails performing costly safety checks with every get_next,
leading to a notable performance overhead.

Therefore, eNetSTL optimizes overall performance by de-
laying safety checks until the memory release, eliminating
the need for safety checks in get_next. This approach is
based on our observation that traversing non-contiguous

5This necessitates the allocation of dynamic memory using bpf_obj_new
and its direct persistence into a BPF map. While eBPF linked list or rb-
tree [16] can accommodate varying amounts of dynamic memory, they do
not support pointer routing.
6The connect wrapper is necessary, as the eBPF verifier doesn’t allow direct
writing of memory returned from kernel functions
7The get_next wrapper is necessary to pass the eBPF verifier

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 void bpf_mm256_mul_epu32 (u32 *dest,
2 const u32 *lhs, const u32 *rhs) {
3 /* Costly load: when using SIMD instructions, the operands
4 * must first be loaded into the SIMD registers.
5 * Abstracting each instruction as an API would mean
6 * that every operation requires a memory read,
7 * resulting in considerable overhead */
8 __m256i lhs_vec = _mm256_loadu_si256(lhs);
9 __m256i rhs_vec = _mm256_loadu_si256(rhs);
10
11 /* Execute instruction*/
12 __m256i dest_vec = _mm256_mul_epu32(lhs_vec, rhs_vec);
13
14 /* Costly store: likewise, once the instruction is executed,
15 * the result must be written back to memory from SIMD registers */
16 __mm256_storeu_si256(dest, dest_vec);
17 }
18
19 int find_simd(const u32 *arr, u32 key) {
20 /* Load only once: At the start of the algorithm,
21 * we perform a single operation to load the input
22 * from memory into the SIMD registers. */
23 __m256i arr_vec = _mm256_loadu_si256(arr);
24
25 /* Implement Alg using SIMD instructions */
26 ...
27
28 /* The result of the algorithm (the index of the matching element)
29 * can be directly returned via the R0 register.*/
30 return index;
31 }

Listing 1. Interfaces for parallel comparing

memory (via get_next) is more frequent than connecting
and releasing memories in network functions. For example,
in a queueing operation [24] using a red-black tree with 𝑛

nodes, the lookup operation relies solely on get_next, while
the deletion operation involves 𝑙𝑜𝑔(𝑛) get_next invocations,
along with a constant number of connect and a final release.
In practice, eNetSTL records memory relationships in the
connect function and automatically deletes all relationships
associated with it based on the recorded information upon
memory release, eliminating the need for safety checks in ev-
ery get_next invocation. For example, consider two nodes,
a and b, where a->next = b. When b is freed, a->next is
automatically set to NULL based on the recorded informa-
tion. This ensures that a->next is always either NULL or a
valid pointer. Lazy safety checking prevents use-after-free is-
sues in incorrect eBPF network functions. Well-implemented
functions have updated memory relationships at the time of
release, reducing the overhead of the release operation. The
effectiveness of this design is demonstrated in §6.2.

4.3 Algorithms and Data Structures
Diving into shared behaviors, we further observe that in
network scenarios, there is no need to employ a low-level
interface for algorithms or data structures to achieve unnec-
essary generality. Based on this insight, eNetSTL reduces the
interaction overhead without sacrificing necessary general-
ity by adopting high-level interfaces, which is desired in the
networking area. Table 2 summarizes the APIs provided by
eNetSTL for the following algorithms or data structures:
Algorithms: bit manipulation. For operations using bit
manipulation instructions, eNetSTL directly encapsulates

1 void fasthash_simd(const void *key,
2 size_t size, u32 *dest) {
3 /* Use SIMD instructions to compute multiple fast hashes
4 * for the same key, with the results temporarily
5 * stored in SIMD registers */
6 __m256i dest_vec = __fasthash_simd(buf, size);
7
8 /* Costly store: Store the results from the SIMD registers
9 * into the dest memory provided by the eBPF program */
10 _mm256_storeu_si256(dest, dest_vec);
11 }
12
13 void hash_simd_cnt(void *buf, size_t buf_sz,
14 const void *key, size_t ksize, u64 flags) {
15 u32 row_sz = GET_ROW_SIZE(flags);
16 u32 col_sz = GET_COL_SIZE(flags);
17 /* Using SIMD to compute multiple hashes
18 * with results stored in SIMD registers */
19 __m256i dest_vec = __hash_simd(buf, size, flags);
20
21 /* Post-hashing operations: retrieve each hash computation result
22 * directly from the SIMD registers and increment the
23 * corresponding counters based on these results. This method
24 * eliminates the need to copy all hash results to memory before
25 * performing the computation. */
26 for (int i = 0; i < HASH_FN_NUM; i++) {
27 /* Retrieve result from SIMD register */
28 ++((u32*)buf + row_sz * i)
29 [*((u32*)&dest_vec + i) & (col_sz)];
30 }
31 }

Listing 2. Interfaces for multiple hash computing

individual bit instructions as interfaces. Despite being a low-
level interface, this approach has a negligible impact on per-
formance. The rationale behind this is that the input for
these bit algorithms is a 64-bit bitmap, and the output is a
numerical value, such as the index of the first set bit. The al-
gorithms can efficiently utilize registers for input and output,
eliminating the need for additional memory copies.
Algorithms: parallel comparing and reducing. For op-
erations involving multiple buckets, optimization can be
achieved by enabling parallel comparison and reduction us-
ing SIMD. The key idea here is that: instead of exposing
low-level SIMD instructions directly, eNetSTL employs high-
level interfaces to encapsulate SIMD instructions, delivering
superb performance while satisfying all use cases for SIMD-
based comparison and reduction. We avoid adopting a low-
level interface due to the significant interaction overhead
caused by memory loads and stores. To elaborate, before
utilizing SIMD instructions, data must be loaded from mem-
ory into SIMD registers8 (referred to as SIMD loads). Upon
completion of SIMD instructions, the results are cached in
another SIMD register and can be reloaded back into mem-
ory (referred to as SIMD stores). Thus, each invocation of the
low-level interface involves loading data from eBPF mem-
ory into registers and copying the result back to eBPF upon
completion. For example, parallel comparison and reduction
require at least two SIMD instructions to complete. Thus, us-
ing low-level interfaces introduces significant performance
overhead. As shown in Listing 1, we provide an example of

8SIMD instructions depend on specific registers, e.g., 256-bit registers for
AVX256

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

eNetSTL Observations APIs Description Involved works

Wrapper Shared behavior 5

node_alloc(release)
(un)set_owner
node_(dis)connect
get_next,
node_write

Memory wrapper which
adopts a proxy-based memory
ownership management and
and lazy safety checking

NFD-HCS [47], FQ/pacing [24], Space Saving [50]

Algorithms

Shared behavior 1 ffs (↑ 1.5×)
popcnt (↑ 1.5×)

Corresponding bit manipula-
tion instruction

Rand-indexed [34], VBF [36], Tiny Table [22], UnivMon [46],
Eiffel [64], Non-Cascade TW [72]

Shared behavior 6 find_simd (↑ 2.1×)
reduce_simd (↑ 2.1×)

Parallel comparison and reduc-
ing max/min algorithms based
on SIMD

Cuckoo Switch [59], CSS [5], HSS [55], Tiny Table [22], Cuckoo
Filter [25], SILT [44], d-left BF [10], Blocked BF [61], RHSS [6],
HeavyKeeper [81]

Shared behavior 2

hw_hash_crc (↑ 1.5×)
hash_simd_cnt (↑ 5.7×)
hash_simd_bit (↑ 5.7×)
hash_simd_comp (↑ 5.7×)

Computingmultiple hash func-
tions based on SIMD and take
actions on memory

d-ary Cuckoo [27], Bloom Filter [8], Summary cache [26], Heavy-
Keeper [81], Count Min [15], UnivMon [46], Sketch Visor [35],
Elastic Sketch [80], Nitro Sketch [45], EFD [20]

Data Structures
Shared behavior 3 list_buckets (↑ 1.7×) Data structure of List-buckets

implemented in eNetSTL Eiffel [64], PCQ [66], Carousel [75], Non-Cascade TW [72]

Shared behavior 4 random_pool (↑ 6.1×) Random number pools with
auto-reinjection RHSS [6], Memento [3], Nitro Sketch [45]

Table 2. Summary of the wrapper, algorithms, and data structures in eNetSTL. The third column illustrates the performance
enhancement of them over the eBPF implementations. (indicated by ↑, with numerical values representing the performance
improvement ratio)

bpf_mm256_mul_epu32 (lines 1-17), which wraps the SIMD
mm256_mul_epu32 instruction. Each invocation incurs costly
loads (lines 8-9) and expensive stores (line 16).

Instead of using the aforementioned low-level instruction-
level exposure, eNetSTL directly provides a high-level inter-
face of parallel comparison and reduction algorithms. Be-
cause the high-level one reduces the number of memory
copies, the two algorithms are already sufficient for oper-
ations involving operations on multiple buckets. The algo-
rithms take the input memory and key as input, while di-
rectly returning a small result, such as the index of the first
matched item, which avoids additional memory copies intro-
duced by storing intermediate results. As shown in Listing 1,
we provide a simplified version of parallel comparing algo-
rithm find_simd. It involves only one input load (line 23)
and returns the final result directly (line 30).
Algorithms: unified post-hashing operations. The cal-
culation of a single hash function can take advantage of
hardware-based CRC instructions, such as practices [36] in
DPDK. Consequently, the computation of a single hash func-
tion can be encapsulated within the hw_hash_crc algorithm.

For operations involving multiple hash calculations, they
can be optimized with SIMD. However, utilizing a low-level
interface that takes a key as input, performs calculations
with multiple hash functions, and copies the results back to
output memory introduces significant overhead. This issue
arises because the results of multiple hash functions are too
large to be directly returned via registers, and eBPF can-
not directly access the results temporarily stored in SIMD
registers. The fundamental problem lies in the absence of
SIMD instruction support within the eBPF instruction set.
Consequently, two extra memory copies are required to re-
trieve the calculation results: first from SIMD registers to
eBPF memory and then from eBPF memory to eBPF registers.
Overcoming this constraint would necessitate expanding the
eBPF instruction set, introducing substantial intrusion into

the kernel. As illustrated in Listing 2, we provide a coun-
terexample of fasthash_simd (lines 1-11), which computes
multiple fasthash on a single key. The store instruction
(line 10) at the end of the algorithm negates the performance
improvement brought by SIMD (line 6).
Therefore, eNetSTL provides high-level interfaces that

encapsulate multiple hash calculations and the subsequent
operations within a single algorithm. This method is fea-
sible with our observation that NFs usually rely more on
how to utilize the results of multiple hash calculations than
the values themselves. For example, NFs utilize the results
of multiple hash calculations to determine memory posi-
tions and execute subsequent operations at these specific
locations (e.g., incrementing counters). These post-hash op-
erations do not necessitate returning results, or the size of
results is much smaller than that of multiple hashing val-
ues. Therefore, eNetSTL unifies hashing and post hashing
operations by offering algorithms such as counting after
hashing [15, 26, 35, 45, 46, 80], setting bits after hashing [8],
and comparing after hashing [27]. This approach eliminates
the need for intensive memory copying, ensuring high per-
formance of NFs. As illustrated in Listing 2, we present the
algorithm hash_cnt_simd (lines 13-31), which computes hash
functions in parallel (line 19) and then increments counters
based on hash results (lines 26-30). The post-hash operation,
i.e., counting, avoids transferring the original hashing values
and consequential expensive memory copies.
Data structure: list-buckets. For NFs that leverage linked
lists to store data elements, eNetSTL provides a high-level
data structure called list-buckets instead of directly utilizing
the linked list data structure provided by eBPF. This design
is driven by two root causes of decreased performance: (1)
eBPF mandates that each insertion and deletion operation on
a linked list must contend for locks, which is performance

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

costly; (2) Using an array of linked lists for NFs requires mul-
tiple BPF map elements to store each list separately, leading
to extra eBPF helper function calls.
eNetSTL provides a high-level data structure of list-

buckets (i.e., bucket-queues) based on our observation that
NFs almost utilize multiple linked lists simultaneously. There-
fore, our design of list-buckets offers a unified API that uses
parameters to select the target queue for insertion. It helps
avoid frequent calls to bpf_map_lookup_elem to access the
underlying singly linked list (queue). List-buckets further
avoid lock contention by holding percpu data, thereby en-
hancing the performance.
Data structures: random-pool. Generating random num-
bers is costly in eBPF. For operations utilizing random updat-
ing, we borrow the idea from previous works [52], abstract-
ing the random number pools as a shared data structure.
Furthermore, we enhance the previous work, which only use
a fixed pool, by designing a mechanism that can automati-
cally reinject random numbers. eNetSTL avoids rapid pool
depletion by adopting a solution from prior research [45, 52],
using a specialized geo_rpool to generate random numbers
following a geometric distribution.

4.4 Safety of eNetSTL
In general, eBPF provides several safety guarantees, in-
cluding safe program termination, memory safety, limited
program complexity, access control to kernel data struc-
tures, and runtime privilege checks. Since eNetSTL is a self-
contained library and not designed for interaction with the
kernel, we primarily focus on two primary safety properties .
Firstly, eBPF guarantees that programs can safely terminate.
This implies the absence of unbounded loops, elimination of
out-of-bound jumps, and prevention of runtime exceptions
(e.g. division by zero error). Secondly, it ensures memory
safety by avoiding out-of-bound memory access, preventing
resource leaks, and avoiding use-after-free issues.
eNetSTL initially implements these APIs in Rust, supple-

mented by manual audits of unsafe code to enhance the
inherent safety of each API. While ensuring the safety of
individual APIs guarantees the safe termination of the entire
eBPF program, it does not fully address memory safety due
to the differing memory models of eBPF and Rust. Within
eBPF programs, we cannot depend on Rust’s memory model,
such as RAII, to protect the memory of resources returned
by APIs. For instance, eBPF programs must call alloc APIs
and release APIs in pairs to release resources.

eNetSTL further ensures the safe interaction between eBPF
and eNetSTL for memory safety. Leveraging Rust and code
reviewing , eNetSTL now offers a collection of memory-safe
APIs. Thus, by ensuring that eBPF programs adhere to cor-
rect API usage—such as explicitly calling release APIs for all
alloc APIs, validating input parameters, and preventing out-
of-bounds access to API-returned memory—we can uphold

the memory safety of the eBPF program. eNetSTL accom-
plishes this by incorporating metadata into APIs (i.e., add
annotations for kfuncs), providing guidance to the eBPF ver-
ifier, which enforces the correct usage of these APIs in eBPF
programs. We now outline the technical details of eNetSTL
that contribute to safe termination and memory safety.
Avoid runtime exceptions and out-of-bound jump: We
utilize open-source rust-no-panic macro [21] to ensure, dur-
ing compile time, that our code remains free from panics.
This requires us to explicitly incorporate boundary check
codes in areas where implicit calls to panic! could arise,
such as during division operations and array indexing. As
for out-of-bound jumps, Rust’s language features ensure they
do not occur in APIs implemented in Rust [38].
Avoid out-of-bound memory access: For API safety, we
introduce a lightweight safe abstraction layer by leveraging
unsafe Rust to convert raw pointers into types for safe Rust.
Specifically, converting pointers into references to their cor-
responding types enables safe Rust to access memory from
eBPF programs without worrying about out-of-bounds is-
sues. For the safe interaction, We provide the function signa-
ture metadata of the API to the verifier, such as whether the
parameters are stack memory or if the return value might
be a null pointer, etc., and the verifier enforces that eBPF
programs pass valid arguments to APIs and access memory
returned from APIs in-bound.
Avoid memory leaks and use-after-free: For API safety,
we implement a safe abstraction layer using smart pointers
with reference counting to manage heap memory, includ-
ing memory allocated by kernel APIs, input arguments of
release APIs, and internal memory of data structures (e.g.,
linked list nodes). At the abstraction layer just before the API
exit, we convert smart pointers to raw pointers, transferring
memory ownership to the eBPF program. This approach en-
sures that all heap memory is either properly released or its
ownership is transferred back to the eBPF program, while
also guaranteeing that all addresses returned by the APIs
are safeguarded by reference counting. To ensure safe inter-
action, we annotate the alloc API and APIs that increment
reference counts with KF_ALLOC. Conversely, the release
API and APIs that decrement reference counts are annotated
with KF_RELEASE. The eBPF verifier confirms that these
APIs are used in pairs.
Limitations and manually reviewing: Although imple-
menting eNetSTL in Rust effectively mitigates safety risks,
we cannot ensure its safety through Rust alone without code
reviews. This limitation arises from two reasons. Firstly, eNet-
STL uses unsafe Rust in its implementation. While safe Rust
guarantees memory safety through its ownership and bor-
row checker and by prohibiting raw pointers, unsafe Rust is
required to enable interactions between the kernel’s eBPF
program and safe Rust. Furthermore, certain APIs in eNet-
STL need to use low-level instructions, like SIMD, which are
also encapsulated in unsafe Rust. Secondly, safe Rust cannot

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

1 typeof struct ptr_list_node {
2 void* outs[1];
3 void* ins[1];
4 OTHER_META_DATA;
5 char data[DATA_SIZE];
6 } list_node;
7
8 void list_add(struct node_list *nl,
9 list_node *head, void *data) {
10 /* Alloc new node with one out ptr and one in ptr */
11 list_node *new_entry = node_alloc(1, 1);
12 if (new_entry == NULL)
13 return; /* Necessary to pass the verifier */
14 set_owner(nl, new_entry); /* Proxy-based memory management */
15 /* head->out[0] */
16 list_node *next = get_next(head, 0);
17 if (next == NULL) {
18 /* head->out[0]=new_entry;
19 * new_entry->in[0]=head; */
20 node_connect(head, 0, new_entry, 0);
21 } else {
22 node_connect(new_entry, 0, next, 0);
23 node_connect(head, 0, new_entry, 0);
24 node_release(next);
25 }
26 /* Required by verifier */
27 node_write(new_entry, OFF, data, DATA_SIZE);
28 /* The node will not be free because of set_owner */
29 node_release(new_entry);
30 }

Listing 3. Example of Case Study 1

fully ensure safe termination because the current toolchain
cannot verify that unbounded loops will safely exit.

Currently, we address this limitation through manual code
reviews. Additionally, the current implementation of eNet-
STL does not use unbounded loops. We believe that as re-
search on Rust and the kernel advances [30, 38], this limi-
tation can be overcome. For example, eBPF kfunc and kptr
mechanisms could provide Rust interfaces, and the kernel
could offer more comprehensive Rust components, such as
new data structures and memory allocators. This would en-
able the development of in-kernel libraries entirely in safe
Rust. Additionally, runtime checks can be implemented to
ensure that unbounded loops eventually terminate [38].

4.5 eNetSTL for Future NFs
Currently, eNetSTL has already fully covered the 35 research
works. Furthermore, we believe that eNetSTL can benefit
future works for two reasons. Firstly, we believe that fu-
ture works will to a certain extent follow the designs from
these representative works, making eNetSTL directly appli-
cable to them. For instance, computing multiple hash for the
same key is likely to remain a common pattern of sketching.
Moreover, the incorporation of support for non-contiguous
memory significantly enhances eBPF’s flexibility in facilitat-
ing other NFs, such as LRU based on lists. Secondly, even if
future works adopt new designs, which may not be directly
covered by eNetSTL now, they can still benefit from the idea
provided by eNetSTL and extract new components from their
designs, which can be further added to eNetSTL. Although
this involves upgrading the in-kernel eNetSTL library, we
believe such upgrading is less frequent and tends to become
rare while eNetSTL becomes more mature.

5 Case Study
In this section, we use case studies to demonstrate how eNet-
STL can solve the problems of incomplete functionalities and
performance degradation. Due to space limitations, we only
select three illustrative cases here, which use the memory
wrapper, algorithms, and data structures, respectively.

5.1 Case Study 1: Key-value Query in NFD-HCS
NFD-HCS [47] employs a key-value query operation based
on skip-list within its in-network caching system. Enabled
by the memory wrapper of eNetSTL, the implementation of
skip-list is now feasible in eBPF, owing to the support for non-
contiguous memory. We use the add_node operation of link-
list as code examples; the principles of skip-list operations
remain consistent.
The crucial aspect of utilizing the memory wrapper is to

follow these steps: (1) Allocate a new node using node_alloc
and delegate the management of the node’s ownership to the
proxy structure using set_owner. (2) Invoke node_release
to destroy a node from the proxy data structure. And this
function will update relationships between nodes as men-
tioned before. (3) The node_(dis)connect function facili-
tates the (dis)connection of two nodes (4) Invoke get_next
to obtain a reference to the next node and use node_release
to release the reference. Reference counting is employed in
get_node to prevent use-after-free issues and the node will
not be actually freed until invoking unset_owner to detach
itself from proxy-based memory management.
Listing 3 gives an example of implementing list_add

interface of linked list using eNetSTL memory wrapper. To
add a new node, it first allocates a new node and leverages the
proxy structure node_list to manage the ownership (lines
10-14). Then it gets the reference of the next node of the
head (i.e., head->next) (line 16). It should be noted that this
step increases the reference count and involves zero safety
checks. Finally, it reconnects nodes (lines 20, 22-23) and
releases references (lines 24, 29).

5.2 Case Study 2: Count-min sketching
Count-min sketch [15] is a widely used sketching operation.
We illustrate how to leverage the algorithm provided by eNet-
STL to optimize its implementation. Invoking an algorithm
in eNetSTL is similar to regular function calls. As Listing 4
shows, the steps to implement Count-min sketch (CM) are as
follows: (1) we define the memory layout of CM (lines 1-3).
(2) we define a BPF map instance to handle the underlying
memory of CM (line 6). (3) when the number of hash func-
tions is small we leverage a hw_hash_crc algorithm (line 22),
otherwise, we use the parallel hash after counting algorithm
hash_simd_cnt (line 29) for optimization.

5.3 Case Study 3: Queuing in Carousel
The Time Wheel [75] constitutes a fundamental logic within
Carousel [63]. Carousel relies on the time wheel to queue

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 struct cm_sketch {
2 u32 cm[ROW_SZ][COL_SZ];
3 };
4
5 /* Use BPF MAP to handle data structure memory */
6 BPF_PERCPU_ARRAY(map, struct cm_sketch, 1);
7
8 /* Implementing data structure operation using eBPF */
9 static void ebpf_countmin_add(struct cm_sketch *cmk, void *pkt) {
10 /*multiple hash computing*/
11 for (int i = 0; i < COL_SZ: i++) {
12 /* Utilize a software-based implementation
13 * of xxhash to compute each hash function sequentially */
14 u32 hash = sw_xx_hash();
15 ++cmk->cm[i][hash & COL_SZ];
16 }
17 }
18 /* Implementing data structure operation using eNetSTL */
19 static void enetstl_coutmin_add(struct cm_sketch *cmk, void *pkt) {
20 #if COL_SZ <= 2
21 for (int i = 0; i < COL_SZ; i++) {
22 u32 hash = hw_hash_crc(pkt, seeds[i]);
23 ++cmk->cm[i][hash & COL_SZ];
24 }
25 #else
26 /* Use SIMD to accelerate the computation
27 * of multiple hash functions */
28 hash_simd_cnt(&cmk->cm, SIZE, pkt, PKT_SIZE,
29 make_flags(ROW_SZ, COL_SZ, HASH_NUM));
30 #endif
31 }

Listing 4. Example of Case Study 2

packets based on their transmission timestamps. In this part,
we introduce how to implement a time wheel using eNet-
STL, which uses the list-buckets data structure provided by
eNetSTL within eBPF.
To utilize the data structures in eNetSTL, based on kptr

[17], the main steps are as follows. Firstly, the alloc func-
tion of the data structure is invoked to create and initiate an
instance (kptr) of the data structure. Secondly, the instance
is stored in a BPF map for later use. Thirdly, the data struc-
ture can be intentionally destroyed by invoking the destroy
function, or it can be automatically destroyed along with
the BPF map. Finally, operations of the data structure are
invoked using the instance as a parameter.

Here, we provide an example of a one-level timewheel (i.e.,
calendar queue) in Listing 5. This data structure uses the list-
buckets in eNetSTL and keeps an instance of it in BPF map
(line 3). On the procedure of add (lines 8-20), it first retrieves
or creates the instance of the bucket lists (line 10). Then it
invokes the insert (line 18) function to insert data into the
bucket calculated by the expires.

6 Evaluation
In this section, we first present our evaluation methodology.
Then, we show the effectiveness of eNetSTL by evaluating
the aforementioned three case studies, and further including
8 extra cases to fully cover all categories of NFs shown in
Table 1.

6.1 Methodology
Environment Setup: Our testbed includes two servers con-
nected back-to-back with a dual-port Intel XL710 40Gbps

1 struct time_wheel {
2 u64 clk;
3 struct bucket_list __kptr *bktlist_lvl_1;
4 }
5
6 BPF_PERCPU_ARRAY(map, struct time_wheel, 1);
7
8 static void add(struct time_wheel *tw,
9 void *data, u64 expires) {
10 struct bucket_list *bl = get_or_init(tw);
11 if (bl == NULL) return;
12 unsigned long idx = expires - base->clk;
13 /* Calculate the index of the bucket */
14 if (idx < TVR_SIZE) expires = tw->clk + TVR_SIZE - 1;
15 /* Calculate the index of bucket */
16 int i = expires & TVR_MASK;
17 /* Insert into the i-th queue using the unify API */
18 bktlist_insert_front(bl, i, data, DATA_SIZE);
19 set_or_release(bl);
20 }

Listing 5. Example of Case Study 3

NIC. Both servers are equipped with two Intel(R) Xeon(R)
CPU E5-2630 v4 @2.20GHz (20 cores), 128GB memory, and
with Linux kernel v6.6. One server acts as a traffic sender
and the other one acts as a receiver where eBPF programs
are attached to the XDP hook in native mode. The evaluation
setup is similar to the recent work [54].
Traffic and performance metric: we use pktgen [37] with
DPDK 22.11 to replay packet traces consisting of randomly
generated 64-byte packets and report results. For certain NFs,
their performance is impacted by the load and configuration.
For example, the performance of the key-value query is influ-
enced by the load factor (i.e., the ratio of the current number
of elements to the maximum capacity) of the underlying
table, and the performance of the sketching is sensitive to
the number of hash functions employed. Thus, we evaluate
the performance by varying the factors that have the great-
est impact on their performance. Detailed testing methods
are explained in each evaluation. We report single-core met-
rics, including throughput and latency, by configuring the
receiver-side scaling (RSS) to redirect all flows to a single
queue bonded to a single CPU on the same NUMA node.
For throughput, the packets are directly dropped after being
processed by the NF, and we report the packet-per-second
(PPS) rate. For latency, after processing, the NF forwards
the packets back to the sender, and the end-to-end latency
is measured by subtracting the send timestamp from the
receive timestamp. For each evaluation, we conduct five tri-
als, report the average, and include error bars to represent
variability. The setup is similar to the existing works [52, 54]

6.2 Network Functions
In this part, we illustrate how eNetSTL can address the
two problems of incomplete functionality and performance
degradation by evaluating 11 representative network func-
tions, with their core components implemented with pure-
eBPF (eBPF), in-kernel (Kernel), and eNetSTL (eNetSTL).
Case Study 1: Key-value query in NFD-HCS [47].We im-
plement skip-list-based key-value query in NFD-CHS based

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

12 13 14 15 16
log (#elements)

0
0.2
0.4
0.6
0.8

T
hr

ou
gh

pu
t (

M
pp

s)

(a) NFD-HCS lookup

12 13 14 15 16
log (#elements)

0
0.2
0.4
0.6
0.8

(b) NFD-HCS queue

10 25 50 75 100
Load factor (%)

0
5

10
15
20

(c) Cuckoo Switch

2 4 6 8 10
Update propability (%)

0
5

10
15
20

(d) Nitro sketch

2 4 6 8
Number of hash

0
5

10
15
20

T
hr

ou
gh

pu
t (

M
pp

s)

(e) Count-min sketch

4 8 16 32
Time slot (μs)

0

5

10

15

(f) Carausel

25 50 75 100
Load factor (%)

0
5

10
15
20

(g) Cuckoo Filter

1 2 3 4
Bitmap level

0
5

10
15
20

(h) Eiffel

eBPF Kernel eNetSTL

eBPF Kernel eNetSTL

eBPF Kernel eNetSTL

Figure 3. Performance of NFs under various configurations.

Cuckoo Switch
Nitro sketch

Count-min sketch
Carausel

Cuckoo Filter Eiffel
0

50

100

Av
g

L
at

en
cy

 (u
s) eBPF Kernel eNetSTL

Figure 4. Latency of NFs under low load (1kpps).

Cuckoo Switch
Nitro sketch

Count-min sketch
Carausel

Cuckoo Filter Eiffel
0

100

200

300

Av
g

Ti
m

e
(n

s)

eBPF Kernel eNetSTL

Figure 5. Per-packet processing time of NFs.

on the memory wrapper of eNetSTL. The skip-list is set with
a maximum height of 16. The key size and the value size are
32B and 128B, respectively. It should be noted that the key-
value query based on skip list is not feasible in native eBPF
as we have already shown in §2.2, so we compared eNet-
STL with the kernel. We conduct two evaluations. Firstly we
evaluate the lookup operation, which finds elements with a
specific key parsed from the packet. Secondly, we evaluate
the performance of update and delete, where update packets
and delete packets arrive in a ratio of 1:1. For both tests, we
evaluate the performance under different loads (i.e., the num-
ber of elements in the current key-value map). The results
are shown in Figure 3(a) and (b). In the case of the lookup
operations, there is a small performance gap of around 7.33%

between eBPF and the kernel. This is because, despite our
efforts to eliminate safety checks in the get_next operation,
some inherent safety mechanisms of eBPF, such as checking
if the pointer returned by kernel function is empty, cannot
be eliminated. However, considering that eNetSTL addresses
the problem of incomplete functionality in eBPF-based NFs,
this performance gap is acceptable. For updates and deletes,
the results are similar to lookup with an average gap of 8.54%.
The reason is although eNetSTL’s lazy safety checking strat-
egy adds overhead in memory release and connection, the
get_next operation remains the primary operation.
Case Study 2: Count-min sketching [15]. We use
hw_hash_crc and hash_simd_cnt in eNetSTL to implement
Count-min sketch using xxhash as the hash function. The
performance of a sketching operation is mainly impacted by
the number of hash functions it employs. Hence, we evaluate
sketches with varying numbers of hash functions. The re-
sults depicted in Figure 3(e) illustrate that eNetSTL achieves
an average performance improvement of 47.9% compared to
eBPF. Notably, the enhancement becomes more pronounced
with an increasing number of hash functions, peaking at
70.9% with 8 hash functions. This is due to the improved op-
timization effect achieved by SIMD instruction as the number
of hash functions increases. When the number of hash func-
tions is low (<=2), we replace them with hw_hash, serving
as a single hash function. The performance of eNetSTL and
kernel is nearly identical with an average gap of 1.64%.
Case Study 3: Queueing in Carousel [63]. Carousel uses
the time wheel to queue packets by sending timestamps. We
implement queuing based on the two-level time wheel in this
case and evaluate the performance of enqueue and dequeue
operations at various time slot granularity. Figure 3(f) shows
that eNetSTL outperforms eBPF by an average of 38.4% due
to the more efficient list-buckets data structure in eNetSTL

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

compared to eBPF’s native linked list. On average, eNetSTL’s
performance lags behind the kernel by 5.75%.
Cuckoo Switch [82]. Cuckoo Switch involves the core
component of key-value query based on Blocked Cuckoo
hash [19] and we implement it using hw_hash_crc and find-
_simd in eNetSTL. The performance is primarily dependent
on the current load of the Blocked Cuckoo hash (i.e., the
average number of elements in each entry). We conduct
evaluations on the performance at various loads, using the
packet 5-tuple as the key and 8-byte dest port as the value. As
illustrated in Figure 3(c). eNetSTL achieves an average perfor-
mance improvement of 27.4% compared to eBPF, with a more
pronounced enhancement as the load increases, reaching up
to 33.08% at full load. This is because, as the load grows,
the average number of comparisons in a single entry rises.
Enhanced optimization is achieved through SIMD-based par-
allel comparisons. In low-load scenarios, the optimization
primarily entails using hw_hash_crc as a replacement for
software-based hash calculations and the SIMD-optimized
full-key comparisons. Compared to the kernel, eNetSTL ex-
hibits an average performance loss of approximately 4.30%.
Nitro sketch [45].We use random_pool and hw_hash_crc
in eNetSTL to implement it. In the eBPF version, we use
bpf_get_prandom_u32 to generate a random number for
each row to determine whether to update that row. In a low
update probability, random number generation plays a dom-
inant role, while a high update probability shifts the focus to
hash calculation. Therefore, we set the number of rows to 8
and conduct evaluations under different update probabilities.
As shown in Figure 3(d). Leveraging both a random number
pool and hardware hash optimization, eNetSTL achieves an
average performance boost of 75.4% compared with eBPF
and an average gap of 5.24% compared with the kernel.
Cuckoo Filter [25]. Cuckoo Filter employs a hash scheme to
perform membership test operations. We implement it using
hw_hash_crc and find_simd in eNetSTL. We evaluate it at
various loads, using the packet 5-tuple as the key and testing
whether a flow belongs to a set. The results, as depicted in
Figure 3(g), show that as the load increases, the optimization
effect of eNetSTL becomes more pronounced. On average,
it achieves a 31.8% optimization, with a 35.7% improvement
under full load. Compared to the kernel, eNetSTL exhibits a
limited performance loss of 0.8%.
Eiffel [64]. Eiffel utilizes cFFS, a bitmap-based priority
queue, for packet queueing. We implement it using ffs in
eNetSTL. The performance is primarily on the priority range,
i.e., the number of FFS (find the first set bit) queries on the
bitmap. We evaluate the enqueuing and dequeuing perfor-
mance of cFFS at different levels which represents a 64𝑙𝑒𝑣𝑒𝑙
maximum distinct priorities. Figure 3(h) indicates that, com-
pared to eBPF, eNetSTL achieves an average performance
improvement of 14.6%, with a more pronounced enhance-
ment as the level increases, reaching up to 20.90% at level 4.

COMP (eBPF)
COMP (low)

COMP (eNetSTL)
HASH (eBPF)

HASH (low)

HASH (eNetSTL)0
20
40
60
80

Ti
m

e
(n

s)

10.9 12.7 5.22

63.5
41.6

11.2

Figure 6. Performance of two observed behaviors: arranging
multiple bucket (COMP) and using multiple hash (HASH).
Low means using low-level interfaces.

Additionally, The performance of eNetSTL is nearly identical
to that of the kernel.
Other cases. We also implemented the following NFs using
eNetSTL: load balancing of EDF [20], packet classification of
TSS [68], counting of HeavyKeeper [81], and membership
testing of VBF [36]. Compared to eBPF, the average per-
formance improvements are 48.3%, 26.7%, 30.0%, and 15.8%,
respectively. And compared to the kernel implementation,
eNetSTL exhibits an average performance gap of 4.71%, 3.96%,
2.53%, and 2.62%, respectively.
Summary. eNetSTL can extensively optimize various NFs,
showing more pronounced improvements, especially in sce-
narios characterized by heavy traffic loads or configurations.
This is because, in heavy-load scenarios, the proportion of
performance contributed by the eBPF codes replaced by eNet-
STL increases, resulting in better optimization. This high-
lights that eNetSTL, while enhancing overall performance,
is particularly well-suited for worst-case scenarios or situ-
ations where leveraging more complex configurations for
achieving better algorithmic metrics (e.g., the accuracy of
sketches) without compromising performance. Furthermore,
compared to the kernel, the performance loss introduced by
the encapsulation in eNetSTL is within an acceptable range
considering its flexibility and generality.

6.3 Latency Evaluations
In this part, we evaluate different types of network func-
tions, measuring latency when implemented using eBPF,
LKM, and eNetSTL. For each NF, we conduct tests under
heavy configurations. For example, for the cuckoo-switch,
we measured latency at a 100% load factor. Figure 4 shows
the results (using a sending rate of 1k pps). We observe that
compared to eBPF, eNetSTL does not significantly increase
latency. We further measure the per-packet processing time
by invoking bpf_ktime_get_ns at the start of the program
and just before returning. As shown in Figure 5, eNetSTL
reduces per packet processing time compared to a pure eBPF
implementation. The experiment results demonstrate that
eNetSTL does not increase the end-to-end latency of network
functions. This is because eNetSTL speeds up the processing
of individual packets in eBPF programs without introducing
mechanisms like batching that could increase the delay of
packets received earlier.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

Bridge (PCN)
LBDSR (PCN) Katran

RakeLimit Sketches0

5

10

15

20

25

T
hr

ou
gh

pu
t (

M
pp

s)

13.8
11.3

6.54 5.72

10.3

16.4

12.0

8.09 8.52

15.5

Origin eNetSTL

Figure 7. Performance of integrating eNetSTL into a real-
world eBPF project (eNetSTL) and original version (Origin)

6.4 Performance Breakdown
In this part, we evaluate the algorithms and data structures
listed in Table 2. The partial results, highlighting the per-
formance improvement realized by eNetSTL in comparison
to pure eBPF, are directly showcased in the third column of
the table (indicated by ↑, with numerical values representing
the performance ratio). It should be noted that the reported
performance in this part is the average time required for
individual operations, excluding packet parsing. The over-
all performance improvement of a single algorithm or data
structure reaches 52.0%-513%. Furthermore, we demonstrate
the significance of rational abstraction by evaluating the per-
formance of different interfaces discussed in §4.3. The results
are depicted in Figure 6. In comparison to the current imple-
mentation of eNetSTL, these methods show a performance
degradation of 59.0% to 73.1%.

6.5 eNetSTL in Action
In this part, we integrate eNetSTL into real-world eBPF
projects including PolyCube (PCN) [53], Katran [57], Rake-
Limit [39], and open-source eBPF-based sketches [52] and
improve their performance, demonstrating that eNetSTL is a
practical solution. We replace the core components (based on
BPF maps) used in these applications with ones implemented
based on eNetSTL. For instance, we replace the key-value
queue operation based on the BPF hash with the one based
on the Blocked Cuckoo hash and the Count-min sketch in
RakeLimit with the eNetSTL version. As shown in Figure 7,
eNetSTL improves the performance by 21.6% on average.

7 Related Work
Software network function: Software network functions
are crucial components of modern network infrastructure.
They can be classified into seven widely used categories:
key-value query [27, 44, 47, 59, 82], membership test [8, 10,
25, 26, 34, 36, 61], packet classification [32, 67, 74], load bal-
ancing [20, 23, 58], counting [3, 5, 6, 22, 50, 55, 81], sketch-
ing [15, 35, 45, 46, 80], and queuing [24, 63, 64, 66, 72].
eBPF for networking: eBPF has become a promising option
for implementing network functions. Recent work includes
fundamental frameworks for data planes such as Cilium
[14], SPRICHT [62], and PolyCube [53]. It also encompasses

network measurement services based on eBPF, including
ViperProbe [42], Nethint [13], and eBPF-sketch [52]. Protocol
stack optimization includes eMPTCP [78] and PQUIC [18],
and network optimization for specific applications such as
BMC [29], and Electrode [83] were also studied. In addition,
hXDP [9, 12] offloads XDP to FPGA for acceleration.
Improve the performance of eBPFprograms: Optimizing
the performance of general eBPF programs can be achieved
by code optimization. For example, K2 [77] utilizes program
synthesis techniques to generate a more efficient version of
eBPF bytecode that still passes the verifier. J. Mao et al. [48]
improve performance through LLVM Instruction Representa-
tion (IR) transformation and bytecode refinement. H. Kuo et
al. [41] observed performance degradation in eBPF applica-
tions due to the chain pattern of multiple eBPF programs and
introduced KFuse to rewrite tail calls (indirect call) between
verified eBPF programs as direct calls. In the network domain,
Miano et al. [54] introduced Morpheus, which dynamically
optimizes eBPF-based network functions with fast-path code
by analyzing the locality of traffic. We believe that eNet-
STL’s approach complements these solutions. For instance,
K2 could also be used to optimize eBPF programs utilizing
eNetSTL.
Rust for operating system. Rust has become a popular
programming language for OS [11, 30, 38, 43, 56]. Notable
work includes building OS from scratch [11, 56], improving
the safety of Linux [43], and implementing drivers [30] and
kernel extensions using Rust [38]. Specifically, regarding
eBPF, J. Jia et al. [38] pointed out that due to the unveri-
fied nature of helper functions and their increasing number,
eBPF’s verifier has become a liability. Thus they proposed
using Rust for developing kernel extensions, combined with
runtime checks to ensure safety. However, this approach of
replacing the entire eBPF subsystem is still far from being
widely adopted. eNetSTL builds on this idea by using Rust to
develop in-kernel libraries while maintaining compatibility
with the existing eBPF infrastructure.

8 Conclusion
In this paper, we identified problems with incomplete func-
tionalities and performance degradation in 35 representative
NFs using eBPF. We introduced eNetSTL, an in-kernel li-
brary for high-performance eBPF-based NFs. eNetSTL is
designed based on the observation that NFs exhibit similar
performance-critical behaviors, allowing us to abstract them
into a minimal and stable set of components.

Acknowledgements
This work is supported by National Natural Science Foun-
dation of China under Grant 62272101, 62402407, 61906040,
61972085, Natural Science Foundation of Jiangsu Province
under grant BK20230083, Peking University startup funding.

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References
[1] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. 2018.

InKeV: in-kernel distributed network virtualization for DCN. SIG-
COMM Comput. Commun. Rev. 46, 3, Article 4 (jul 2018), 6 pages.
https://doi.org/10.1145/3243157.3243161

[2] Alexei Starovoitov. Accessed September. 2024. Re: Sup-
porting New Memory Barrier Types in BPF. https:
//lore.kernel.org/bpf/CAADnVQJqGzH+iT9M8ajT62H9+
kAw1RXAdB42G3pvcLKPVmy8tg@mail.gmail.com/. (Accessed
September. 2024).

[3] Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik,
and Erez Waisbard. 2018. Memento: Making SlidingWindows Efficient
for Heavy Hitters. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT ’18).
Association for Computing Machinery, New York, NY, USA, 254–266.
https://doi.org/10.1145/3281411.3281427

[4] bcc. Accessed Jan. 2024. BPF Features by Linux Kernel Version. https:
//github.com/iovisor/bcc/blob/master/docs/kernel-versions.md. (Ac-
cessed Jan. 2024).

[5] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016.
Heavy hitters in streams and sliding windows. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Commu-
nications. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524364

[6] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli, and
Erez Waisbard. 2017. Constant Time Updates in Hierarchical Heavy
Hitters. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). Association for Com-
puting Machinery, New York, NY, USA, 127–140. https://doi.org/10.
1145/3098822.3098832

[7] Bill Mulligan, Daniel Borkmann. Accessed May. 2024. The Silent
PlatformRevolution: How eBPF Is Fundamentally Transforming Cloud-
Native Platforms. https://www.infoq.com/articles/ebpf-cloud-native-
platforms/. (Accessed May. 2024).

[8] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Commun. ACM 13, 7 (jul 1970), 422–426. https:
//doi.org/10.1145/362686.362692

[9] Marco Bonola, Giacomo Belocchi, Angelo Tulumello, Marco Spaziani
Brunella, Giuseppe Siracusano, Giuseppe Bianchi, and Roberto Bi-
fulco. 2022. Faster Software Packet Processing on FPGA NICs with
eBPF Program Warping. In 2022 USENIX Annual Technical Confer-
ence, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, Jiri
Schindler and Noa Zilberman (Eds.). USENIX Association, 987–1004.
https://www.usenix.org/conference/atc22/presentation/bonola

[10] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,
and George Varghese. 2006. An improved construction for counting
bloom filters. In Algorithms–ESA 2006: 14th Annual European Sym-
posium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14.
Springer, 684–695.

[11] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020.
Theseus: an Experiment in Operating System Structure and State
Management. In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20). USENIX Association, 1–19. https:
//www.usenix.org/conference/osdi20/presentation/boos

[12] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-
marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2020.
hXDP: Efficient Software Packet Processing on FPGA NICs. In 14th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020. USENIXAssociation, 973–
990. https://www.usenix.org/conference/osdi20/presentation/brunella

[13] Jingrong Chen, Hong Zhang, Wei Zhang, Liang Luo, Jeffrey S. Chase,
Ion Stoica, and Danyang Zhuo. 2022. NetHint: White-Box Networking
for Multi-Tenant Data Centers. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2022, Renton, WA,

USA, April 4-6, 2022, Amar Phanishayee and Vyas Sekar (Eds.). USENIX
Association, 1327–1343. https://www.usenix.org/conference/nsdi22/
presentation/chen-jingrong

[14] Cilium official website. Accessed Jan. 2024. Cilium: eBPF-based Net-
working, Observability, Security. https://cilium.io/. (Accessed Jan.
2024).

[15] Graham Cormode and S. Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75. https://doi.org/10.1016/j.jalgor.2003.
12.001

[16] Dave Marchevsky. Accessed Jan. 2024. BPF rbtree next-gen datastruc-
ture. https://lwn.net/Articles/917201/. (Accessed Jan. 2024).

[17] David Vernet. Accessed Jan. 2024. Long-lived kernel pointers in BPF.
https://lwn.net/Articles/900749/. (Accessed Jan. 2024).

[18] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Ro-
chet, Thomas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier
Bonaventure. 2019. Pluginizing QUIC. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). As-
sociation for Computing Machinery, New York, NY, USA, 59–74.
https://doi.org/10.1145/3341302.3342078

[19] Martin Dietzfelbinger and Christoph Weidling. 2007. Balanced alloca-
tion and dictionaries with tightly packed constant size bins. Theoretical
Computer Science 380, 1-2 (2007), 47–68.

[20] DPDK. Accessed Jan. 2024. Elastic Flow Distributor Library. https:
//doc.dpdk.org/guides/prog_guide/efd_lib.html. (Accessed Jan. 2024).

[21] dtolnay/no-panic GitHub Repository. Accessed May. 2024. RUST
no-panic micro. https://github.com/dtolnay/no-panic/tree/master.
(Accessed May. 2024).

[22] Gil Einziger and Roy Friedman. 2016. Counting with tinytable: Ev-
ery bit counts!. In Proceedings of the 17th International Conference on
Distributed Computing and Networking. 1–10.

[23] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A fast and reliable
software network load balancer. In 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16). 523–535.

[24] Eric Dumazet. Accessed Jan. 2024. pkt_sched: fq: Fair Queue packet
scheduler. https://lwn.net/Articles/564825/. (Accessed Jan. 2024).

[25] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzen-
macher. 2014. Cuckoo Filter: Practically Better Than Bloom. In
Proceedings of the 10th ACM International on Conference on Emerg-
ing Networking Experiments and Technologies (CoNEXT ’14). Associ-
ation for Computing Machinery, New York, NY, USA, 75–88. https:
//doi.org/10.1145/2674005.2674994

[26] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. 2000. Summary cache: a
scalable wide-areaWeb cache sharing protocol. IEEE/ACMTransactions
on Networking 8, 3 (2000), 281–293. https://doi.org/10.1109/90.851975

[27] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2005.
Space efficient hash tables with worst case constant access time. Theory
of Computing Systems 38, 2 (2005), 229–248.

[28] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
2019. Simple and Precise Static Analysis of Untrusted Linux Kernel
Extensions. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2019). As-
sociation for Computing Machinery, New York, NY, USA, 1069–1084.
https://doi.org/10.1145/3314221.3314590

[29] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles
Muller. 2021. BMC: Accelerating Memcached using Safe In-kernel
Caching and Pre-stack Processing. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2021, April 12-14, 2021,
James Mickens and Renata Teixeira (Eds.). USENIX Association, 487–
501. https://www.usenix.org/conference/nsdi21/presentation/ghigoff

https://doi.org/10.1145/3243157.3243161
https://lore.kernel.org/bpf/CAADnVQJqGzH+iT9M8ajT62H9+kAw1RXAdB42G3pvcLKPVmy8tg@mail.gmail.com/
https://lore.kernel.org/bpf/CAADnVQJqGzH+iT9M8ajT62H9+kAw1RXAdB42G3pvcLKPVmy8tg@mail.gmail.com/
https://lore.kernel.org/bpf/CAADnVQJqGzH+iT9M8ajT62H9+kAw1RXAdB42G3pvcLKPVmy8tg@mail.gmail.com/
https://doi.org/10.1145/3281411.3281427
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://doi.org/10.1109/INFOCOM.2016.7524364
https://doi.org/10.1145/3098822.3098832
https://doi.org/10.1145/3098822.3098832
https://www.infoq.com/articles/ebpf-cloud-native-platforms/
https://www.infoq.com/articles/ebpf-cloud-native-platforms/
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://www.usenix.org/conference/atc22/presentation/bonola
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/brunella
https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong
https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong
https://cilium.io/
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://lwn.net/Articles/917201/
https://lwn.net/Articles/900749/
https://doi.org/10.1145/3341302.3342078
https://doc.dpdk.org/guides/prog_guide/efd_lib.html
https://doc.dpdk.org/guides/prog_guide/efd_lib.html
https://github.com/dtolnay/no-panic/tree/master
https://lwn.net/Articles/564825/
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/3314221.3314590
https://www.usenix.org/conference/nsdi21/presentation/ghigoff

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Bin Yang, Dian Shen, Junxue Zhang, et al.

[30] Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg. 2023.
Takeaways of Implementing a Native Rust UDP Tunneling Network
Driver in the Linux Kernel. In Proceedings of the 12th Workshop on
Programming Languages and Operating Systems (PLOS ’23). Association
for Computing Machinery, New York, NY, USA, 18–25. https://doi.
org/10.1145/3623759.3624547

[31] Google Cloud. Accessed May. 2024. New GKE Dataplane
V2 increases security and visibility for containers. https:
//cloud.google.com/blog/products/containers-kubernetes/bringing-
ebpf-and-cilium-to-google-kubernetes-engine. (Accessed May. 2024).

[32] Pankaj Gupta and Nick McKeown. 2000. Classifying Packets with
Hierarchical Intelligent Cuttings. IEEE Micro 20, 1 (2000), 34–41. https:
//doi.org/10.1109/40.820051

[33] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The eXpress data path: fast programmable packet processing in the
operating system kernel. In Proceedings of the 14th International Confer-
ence on emerging Networking EXperiments and Technologies, CoNEXT
2018, Heraklion, Greece, December 04-07, 2018, Xenofontas A. Dim-
itropoulos, Alberto Dainotti, Laurent Vanbever, and Theophilus Ben-
son (Eds.). ACM, 54–66. https://doi.org/10.1145/3281411.3281443

[34] Nan Hua, Haiquan Zhao, Bill Lin, and Jun Xu. 2008. Rank-indexed
hashing: A compact construction of Bloom filters and variants. In
2008 IEEE International Conference on Network Protocols. 73–82. https:
//doi.org/10.1109/ICNP.2008.4697026

[35] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. 2017. SketchVisor: Robust Network Measure-
ment for Software Packet Processing. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 113–126.
https://doi.org/10.1145/3098822.3098831

[36] Intel. Accessed Jan. 2024. Membership Library. https://doc.dpdk.org/
guides/prog_guide/member_lib.html. (Accessed Jan. 2024).

[37] Intel. Accessed Jan. 2024. Pktgen - Traffic Generator powered by DPDK.
https://github.com/pktgen/Pktgen-DPDK. (Accessed Jan. 2024).

[38] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le,
and Tianyin Xu. 2023. Kernel Extension Verification is Untenable. In
Proceedings of the 19th Workshop on Hot Topics in Operating Systems
(HOTOS ’23). Association for Computing Machinery, New York, NY,
USA, 150–157. https://doi.org/10.1145/3593856.3595892

[39] Jonas Otten. Accessed Jan. 2024. Raking the floods: my intern project
using eBPF. https://blog.cloudflare.com/building-rakelimit/. (Accessed
Jan. 2024).

[40] Kumar Kartikeya Dwivedi. Accessed Jan. 2024. Local kptrs, BPF linked
lists. https://lwn.net/Articles/913660/. (Accessed Jan. 2024).

[41] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin
Mohan, and Tianyin Xu. 2022. Verified programs can party: optimizing
kernel extensions via post-verification merging. In Proceedings of the
Seventeenth European Conference on Computer Systems (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 283–299.
https://doi.org/10.1145/3492321.3519562

[42] Joshua Levin and Theophilus A. Benson. 2020. ViperProbe: Rethinking
Microservice Observability with eBPF. In 2020 IEEE 9th International
Conference on Cloud Networking (CloudNet). 1–8. https://doi.org/10.
1109/CloudNet51028.2020.9335808

[43] Jialin Li, Samantha Miller, Danyang Zhuo, Ang Chen, Jon Howell,
and Thomas Anderson. 2021. An incremental path towards a safer
OS kernel. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’21). Association for Computing Machinery, New York,
NY, USA, 183–190. https://doi.org/10.1145/3458336.3465277

[44] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
2011. SILT: AMemory-Efficient, High-Performance Key-Value Store. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP ’11). Association for Computing Machinery, New York,

NY, USA, 1–13. https://doi.org/10.1145/2043556.2043558
[45] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir

Braverman, Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust
and General Sketch-Based Monitoring in Software Switches. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 334–350. https://doi.org/10.1145/3341302.3342076

[46] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM SIGCOMM Conference (SIGCOMM ’16). Association for Comput-
ing Machinery, New York, NY, USA, 101–114. https://doi.org/10.1145/
2934872.2934906

[47] Rodrigo B. Mansilha, Lorenzo Saino, Marinho P. Barcellos, Massimo
Gallo, Emilio Leonardi, Diego Perino, and Dario Rossi. 2015. Hi-
erarchical Content Stores in High-Speed ICN Routers: Emulation
and Prototype Implementation. In Proceedings of the 2nd ACM Con-
ference on Information-Centric Networking (ACM-ICN ’15). Associa-
tion for Computing Machinery, New York, NY, USA, 59–68. https:
//doi.org/10.1145/2810156.2810159

[48] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. 2024. Merlin:
Multi-tier Optimization of eBPF Code for Performance and Compact-
ness. In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 639–653. https://doi.org/10.1145/3620666.3651387

[49] Marek Majkowski. Accessed May. 2024. Cloudflare architecture
and how BPF eats the world. https://blog.cloudflare.com/cloudflare-
architecture-and-how-bpf-eats-the-world/. (Accessed May. 2024).

[50] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Effi-
cient computation of frequent and top-k elements in data streams. In
Database Theory-ICDT 2005: 10th International Conference, Edinburgh,
UK, January 5-7, 2005. Proceedings 10. Springer, 398–412.

[51] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez
Bernal, Yunsong Lu, and Jianwen Pi. 2019. Securing Linux with a
faster and scalable iptables. Comput. Commun. Rev. 49, 3 (2019), 2–17.
https://doi.org/10.1145/3371927.3371929

[52] Sebastiano Miano, Xiaoqi Chen, Ran Ben Basat, and Gianni Antichi.
2023. Fast In-kernel Traffic Sketching in eBPF. ACM SIGCOMM
Computer Communication Review 53, 1 (2023).

[53] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo
Bertrone, and Yunsong Lu. 2021. A Framework for eBPF-Based
Network Functions in an Era of Microservices. IEEE Transactions
on Network and Service Management 18, 1 (2021), 133–151. https:
//doi.org/10.1109/TNSM.2021.3055676

[54] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and
Gianni Antichi. 2022. Domain Specific Run Time Optimization for Soft-
ware Data Planes. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’22). Association for Computing Machinery, New
York, NY, USA, 1148–1164. https://doi.org/10.1145/3503222.3507769

[55] Michael Mitzenmacher, Thomas Steinke, and Justin Thaler. 2012. Hi-
erarchical heavy hitters with the space saving algorithm. In 2012 Pro-
ceedings of the Fourteenth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM, 160–174.

[56] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isola-
tion and Communication in a Safe Operating System. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, 21–39. https://www.usenix.org/conference/
osdi20/presentation/narayanan-vikram

[57] Nikita Shirokov, Ranjeeth Dasineni. Accessed May. 2024.
Open-sourcing Katran, a scalable network load balancer.
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-

https://doi.org/10.1145/3623759.3624547
https://doi.org/10.1145/3623759.3624547
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://cloud.google.com/blog/products/containers-kubernetes/bringing-ebpf-and-cilium-to-google-kubernetes-engine
https://doi.org/10.1109/40.820051
https://doi.org/10.1109/40.820051
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1109/ICNP.2008.4697026
https://doi.org/10.1109/ICNP.2008.4697026
https://doi.org/10.1145/3098822.3098831
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://doc.dpdk.org/guides/prog_guide/member_lib.html
https://github.com/pktgen/Pktgen-DPDK
https://doi.org/10.1145/3593856.3595892
https://blog.cloudflare.com/building-rakelimit/
https://lwn.net/Articles/913660/
https://doi.org/10.1145/3492321.3519562
https://doi.org/10.1109/CloudNet51028.2020.9335808
https://doi.org/10.1109/CloudNet51028.2020.9335808
https://doi.org/10.1145/3458336.3465277
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1145/3341302.3342076
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2810156.2810159
https://doi.org/10.1145/2810156.2810159
https://doi.org/10.1145/3620666.3651387
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1109/TNSM.2021.3055676
https://doi.org/10.1109/TNSM.2021.3055676
https://doi.org/10.1145/3503222.3507769
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

eNetSTL: Towards an In-kernel Library for High-Performance eBPF-based NFs EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

katran-a-scalable-network-load-balancer/. (Accessed May. 2024).
[58] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin

Raiciu. 2018. Stateless datacenter load-balancing with beamer. In 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18). 125–139.

[59] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/j.
jalgor.2003.12.002

[60] Federico Parola, Roberto Procopio, Roberto Querio, and Fulvio Risso.
2023. Comparing User Space and In-Kernel Packet Processing for
Edge Data Centers. SIGCOMM Comput. Commun. Rev. 53, 1 (apr 2023),
14–29. https://doi.org/10.1145/3594255.3594257

[61] Felix Putze, Peter Sanders, and Johannes Singler. 2007. Cache-, hash-
and space-efficient bloom filters. In Experimental Algorithms: 6th Inter-
national Workshop, WEA 2007, Rome, Italy, June 6-8, 2007. Proceedings
6. Springer, 108–121.

[62] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ra-
makrishnan. 2022. SPRIGHT: Extracting the Server from Serverless
Computing! High-Performance EBPF-Based Event-Driven, Shared-
Memory Processing. In Proceedings of the ACM SIGCOMM 2022 Con-
ference (SIGCOMM ’22). Association for Computing Machinery, New
York, NY, USA, 780–794. https://doi.org/10.1145/3544216.3544259

[63] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic
Shaping at End Hosts. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). As-
sociation for Computing Machinery, New York, NY, USA, 404–417.
https://doi.org/10.1145/3098822.3098852

[64] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa
Ammar, Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and
Flexible Software Packet Scheduling. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA, 17–32. https://www.usenix.org/conference/
nsdi19/presentation/saeed

[65] Sanjit Bhat and Hovav Shacham. Accessed Jan. 2024. For-
mal Verification of the Linux Kernel eBPF Verifier Range Anal-
ysis. https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-
analysis22.pdf. (Accessed Jan. 2024).

[66] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
2020. Programmable Calendar Queues for High-speed Packet Sched-
uling. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 685–
699. https://www.usenix.org/conference/nsdi20/presentation/sharma

[67] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. 2003.
Packet classification using multidimensional cutting. In Proceedings
of the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, August 25-
29, 2003, Karlsruhe, Germany, Anja Feldmann, Martina Zitterbart, Jon
Crowcroft, and David Wetherall (Eds.). ACM, 213–224. https://doi.org/
10.1145/863955.863980

[68] V. Srinivasan, S. Suri, and G. Varghese. 1999. Packet Classification Us-
ing Tuple Space Search. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’99). Association for Computing Machinery, New York, NY,
USA, 135–146. https://doi.org/10.1145/316188.316216

[69] The Linux kernel. Accessed Jan. 2024. BPF Kernel Functions (kfuncs).
https://docs.kernel.org/bpf/kfuncs.html. (Accessed Jan. 2024).

[70] The Linux kernel. Accessed Jan. 2024. BPF maps. https://docs.kernel.
org/bpf/maps.html. (Accessed Jan. 2024).

[71] The Linux kernel. Accessed Jan. 2024. Helper functions. https://www.
kernel.org/doc/html/latest/bpf/helpers.html. (Accessed Jan. 2024).

[72] Thomas Gleixner. Accessed Jan. 2024. timer: Refactor the timer
wheel. https://lore.kernel.org/lkml/20160617121134.417319325@

linutronix.de/. (Accessed Jan. 2024).
[73] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. re-

visiting the open vSwitch dataplane ten years later. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). As-
sociation for Computing Machinery, New York, NY, USA, 245–257.
https://doi.org/10.1145/3452296.3472914

[74] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2010.
EffiCuts: optimizing packet classification for memory and through-
put. In Proceedings of the ACM SIGCOMM 2010 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munications, New Delhi, India, August 30 -September 3, 2010, Shiv-
kumar Kalyanaraman, Venkata N. Padmanabhan, K. K. Ramakrish-
nan, Rajeev Shorey, and Geoffrey M. Voelker (Eds.). ACM, 207–218.
https://doi.org/10.1145/1851182.1851208

[75] G. Varghese and T. Lauck. 1987. Hashed and Hierarchical Timing
Wheels: Data Structures for the Efficient Implementation of a Timer
Facility. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles (SOSP ’87). Association for Computing Machinery,
New York, NY, USA, 25–38. https://doi.org/10.1145/41457.37504

[76] Marcos Augusto M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico,
Elerson Rubens da Silva Santos, Eduardo P. M. Câmara Júnior, and
Luiz Filipe M. Vieira. 2021. Fast Packet Processing with eBPF and XDP:
Concepts, Code, Challenges, and Applications. ACM Comput. Surv. 53,
1 (2021), 16:1–16:36. https://doi.org/10.1145/3371038

[77] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana,
and Anirudh Sivaraman. 2021. Synthesizing safe and efficient ker-
nel extensions for packet processing. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference (SIGCOMM ’21). Association for Comput-
ing Machinery, New York, NY, USA, 50–64. https://doi.org/10.1145/
3452296.3472929

[78] Bin Yang, Dian Shen, Junxue Zhang, Fang Dong, Junzhou Luo, and
John C.S. Lui. 2022. Towards the Full Extensibility of Multipath
TCP with eMPTCP. In 2022 IEEE 30th International Conference on Net-
work Protocols (ICNP). 1–11. https://doi.org/10.1109/ICNP55882.2022.
9940354

[79] Rui Yang andMarios Kogias. 2023. HEELS: AHost-Enabled eBPF-Based
Load Balancing Scheme. In Proceedings of the 1st Workshop on EBPF and
Kernel Extensions (eBPF ’23). Association for Computing Machinery,
New York, NY, USA, 77–83. https://doi.org/10.1145/3609021.3609307

[80] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive
and Fast Network-Wide Measurements. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY,
USA, 561–575. https://doi.org/10.1145/3230543.3230544

[81] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shi-
gang Chen, and Xiaoming Li. 2019. HeavyKeeper: An Accurate Al-
gorithm for Finding Top- 𝑘 Elephant Flows. IEEE/ACM Transactions
on Networking 27, 5 (2019), 1845–1858. https://doi.org/10.1109/TNET.
2019.2933868

[82] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G.
Andersen. 2013. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’13). As-
sociation for Computing Machinery, New York, NY, USA, 97–108.
https://doi.org/10.1145/2535372.2535379

[83] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu.
2023. Electrode: Accelerating Distributed Protocols with eBPF. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 1391–1407. https://www.
usenix.org/conference/nsdi23/presentation/zhou

https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/3594255.3594257
https://doi.org/10.1145/3544216.3544259
https://doi.org/10.1145/3098822.3098852
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://www.usenix.org/conference/nsdi19/presentation/saeed
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/316188.316216
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/maps.html
https://www.kernel.org/doc/html/latest/bpf/helpers.html
https://www.kernel.org/doc/html/latest/bpf/helpers.html
https://lore.kernel.org/lkml/20160617121134.417319325@linutronix.de/
https://lore.kernel.org/lkml/20160617121134.417319325@linutronix.de/
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1145/1851182.1851208
https://doi.org/10.1145/41457.37504
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1109/ICNP55882.2022.9940354
https://doi.org/10.1109/ICNP55882.2022.9940354
https://doi.org/10.1145/3609021.3609307
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1145/2535372.2535379
https://www.usenix.org/conference/nsdi23/presentation/zhou
https://www.usenix.org/conference/nsdi23/presentation/zhou

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 eBPF-based Network Functions
	2.2 Problems Identified
	2.3 Conventional Solutions & Their Problems

	3 Observations & Opportunities
	4 eNetSTL
	4.1 Background of Kfunc and Kptr
	4.2 Proxy-based and Lazy Memory Wrapper
	4.3 Algorithms and Data Structures
	4.4 Safety of eNetSTL
	4.5 eNetSTL for Future NFs

	5 Case Study
	5.1 Case Study 1: Key-value Query in NFD-HCS
	5.2 Case Study 2: Count-min sketching
	5.3 Case Study 3: Queuing in Carousel

	6 Evaluation
	6.1 Methodology
	6.2 Network Functions
	6.3 Latency Evaluations
	6.4 Performance Breakdown
	6.5 eNetSTL in Action

	7 Related Work
	8 Conclusion
	References

