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Abstract
While many hardware accelerators have recently been pro-
posed to address the inefficiency problem of fully homo-
morphic encryption (FHE) schemes, none of them is able
to deliver optimal performance when facing real-world FHE
workloads consisting of a mixture of shallow and deep compu-
tations, due primarily to their homogeneous design principle.

This paper presents FLASH-FHE, the first FHE accelerator
with a heterogeneous architecture for mixed workloads. At its
heart, FLASH-FHE designs two types of computation clusters,
i.e., bootstrappable and swift, to optimize for deep and shallow
workloads respectively in terms of cryptographic parameters
and hardware pipelines. We organize one bootstrappable and
two swift clusters into one cluster affiliation, and present a
scheduling scheme that provides sufficient acceleration for
deep FHE workloads by utilizing all the affiliations, while im-
proving parallelism for shallow FHE workloads by assigning
one shallow workload per affiliation and dynamically decom-
posing the bootstrappable cluster into multiple swift pipelines
to accelerate the assigned workload. We further show that
these two types of clusters can share valuable on-chip mem-
ory, improving performance without significant resource con-
sumption. We implement FLASH-FHE with RTL and synthe-
size it using both 7nm and 14/12nm technology nodes, and
our experiment results demonstrate that FLASH-FHE achieves
an average performance improvement of 1.4× and 11.2×
compared to state-of-the-art FHE accelerators CraterLake and
F1 for deep workloads, while delivering up to 8.0× speedup
for shallow workloads due to its heterogeneous architecture.

1 Introduction

Fully Homomorphic Encryption (FHE) has emerged as a
promising technology for enabling privacy-preserving compu-
tation. It allows rich computation directly over encrypted data
without the need for decryption. However, FHE suffers from
a significant drawback—inefficiency. Compared to cleartext
computation, FHE is approximately 5−6 orders of magnitude
slower. To address this challenge and make FHE a practical
solution, researchers have proposed FHE accelerators.

∗Work done while at iSINGLab @ Hong Kong University of Science and
Technology.

FHE accelerators employ increasingly advanced hardware
platforms, ranging from CPUs [9] to GPUs [20, 27], FP-
GAs [3, 7, 39], and ASICs [28–30, 40, 41], in pursuit of high
acceleration performance. However, in this paper, we observe
that existing FHE accelerators all ignore one crucial feature of
real-world FHE workloads: they are highly mixed, thus failing
to achieve optimal overall performance for mixed workloads.

The mixed FHE workloads pose different design goals
and choices for FHE accelerators. Specifically, some FHE
workloads, referred to as shallow workloads, do not require
bootstrapping, such as matrix computation and database
queries [1]. They require a relatively small multiplication
level L and polynomial degree N. Therefore, a potential accel-
eration method for shallow workloads is to provide adequate
parallelism for them. On the other hand, deep workloads,
including neural network inference [33, 36] and big data an-
alytics [26], necessitate bootstrapping, along with requiring
a larger N and L. Moreover, the overall performance of deep
workloads is largely decided by the performance of bootstrap-
ping, which usually requires one dedicated accelerator to be
fully accelerated.

Consequently, using FHE accelerators designed for shal-
low workloads, such as F1, to support mixed FHE workloads
results in either the inability to handle deep workloads or over
a 10× performance degradation due to naïve extension (e.g.,
F1+ in [41]). Conversely, utilizing FHE accelerators built for
deep workloads, such as CraterLake, results in inadequate
parallelism for shallow workloads. Increasing parallelism by
allocating more computation clusters leads to overwhelming
chip area and poses commercial drawbacks for FHE accelera-
tors. Furthermore, the non-continuous nature of cryptographic
parameters for shallow and deep workloads eliminates the
possibility of achieving good average performance through
parameter averaging.

A potential solution to handling both shallow and deep
workloads is to use two distinct architectures. However, Using
two separate architectures for shallow and deep workloads
nearly doubles production costs, while relying on CPU/G-
PU/FPGA for shallow workloads results in poor performance
and additional costs. This also introduces deployment chal-
lenges, such as increased PCIe usage and failure rates.

To this end, we ask: can we design a FHE accelerator
that achieves consistently high performance for mixed work-
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loads? To answer the question, we observe that existing FHE
accelerators adopt a homogeneous design, where the crypto-
graphic parameter, hardware pipeline design and scheduling
mechanism are purely optimized for either shallow or deep
workloads only, precluding simultaneous optimization for
both shallow and deep workloads.

Based on this observation, we propose FLASH-FHE, the
FHE accelerator with a heterogeneous architecture for mixed
FHE workloads. At its core, FLASH-FHE employs two types
of computation clusters: bootstrappable and swift compu-
tation clusters, optimized for deep and shallow workloads,
respectively. FLASH-FHE organizes one bootstrappable and
two swift clusters as one cluster affiliation and has eight af-
filiations in total. Besides conventional scheduling policy for
deep workloads by using all affiliations, FLASH-FHE further
incorporates a scheduling mechanism that targets at improv-
ing parallelism by assigning one shallow workload to only
one cluster affiliation, where the bootstrappable cluster is dy-
namically decomposed into multiple separate swift pipelines
to adequately accelerate the assigned workload. Last but not
least, FLASH-FHE integrates a hierarchical data cache, which
allows different clusters to share valuable on-chip memory
resources. Therefore, we can improve the overall performance
of FLASH-FHE without dramatically increasing the chip area.
To the best of our knowledge, FLASH-FHE is among the first to
introduce a heterogeneous architecture for FHE accelerators.

We implement FLASH-FHE using RTL and synthesize it
with two technology nodes, i.e., 7nm and 14/12nm, respec-
tively. We further evaluate FLASH-FHE with seven real-world
FHE workloads, comprising three shallow and four deep work-
loads. Evaluation results demonstrate that compared to Crater-
Lake and F1, which are two representative FHE accelerators
with 14/12nm technology node, FLASH-FHE can achieve 1.4×
and 11.2× average performance improvement for deep work-
loads, respectively. For shallow workloads, FLASH-FHE can
achieve up to 8.0× speedup since it can accelerate multiple
shallow workloads in parallel. Moreover, the significant per-
formance improvement for shallow workloads is achieved at
the cost of < 7% extra hardware resources.

Finally, we summarize the contributions of this paper as
follows:

• We thoroughly analyze representative shallow and deep
FHE workloads and identify their optimal parameter set-
tings, highlighting the polarization between these work-
loads.

• Based on our observations, we are among the first to intro-
duce a heterogeneous acceleration architecture for FHE,
inspired by the big.LITTLE design philosophy. This in-
cludes heterogeneous (i)NTT pipelines, a multi-level trans-
pose module, and a hierarchical caching structure to fully
implement the big.LITTLE concept.

• Leveraging our heterogeneous architecture, we propose the
first multi-job scheduler for FHE workloads, optimizing

Notation Definition

N Degree of a polynomial.
L Multiplicative depth of a fresh ciphertext.
l Current multiplicative depth of a ciphertext.
q Coefficient modulus of cleartext polynomial.
Q Coefficient modulus of ciphertext polynomial.
G The number of computation groups in the group architecture.
R The number of rows in the NTT implementation.
C The number of columns in the NTT implementation.

lsub
The number of parallel modular multiplication pipelines
in the basis converter of sequential BConv unit.

{qi, i ∈ [0,L]} A set of moduli. Q = ∏
L
i=0 qi.

P Special modulus for the keys.
{pi, i ∈ [0,α−1]} A set of special moduli. P = ∏

α−1
i=0 pi.

dnum Decomposition number in key-switching.
α # of special moduli pi. α = ⌊(L+1)/dnum⌋.

Table 1: Notations used in this paper.

both parallelization and cache hit ratios.
We believe our contributions provide valuable insights for

the FHE community by demonstrating how the concept of
heterogeneity can be seamlessly integrated into existing FHE
accelerators, such as CraterLake [41], ARK [29], SHARP [28],
etc. While these accelerators are primarily optimized for deep
FHE workloads, our approach enables them to retain their
current deep computation engines while incorporating key
components such as multi-exit (i)NTT pipelines, multi-level
transpose, and hierarchical caching. With the addition of these
hardware modules and our multi-job scheduler, these acceler-
ators can significantly improve their support for shallow FHE
workloads by allowing parallel execution, making them more
versatile and capable of handling mixed FHE workloads with
minimal modifications.

2 Background

2.1 Fully Homomorphic Encryption

FHE allows performing specific homomorphic operations
directly over ciphertexts without decrypting them [10, 14, 15,
19]. In the following sections, we will take CKKS [14] as
an example to demonstrate the operations used in FHE, and
other FHE schemes, such as BFV [19], BGV [10], etc., should
share similar operations. Table 1 summarizes the notations
used in this paper.
Homomorphic Addition: The ciphertext in CKKS can be
represented as ct = (c0,c1), where c is a polynomial. The
result of the homomorphic addition between one ciphertext ct
and one cleartext m, which is also a polynomial, is (c0+m,c1)
while the result of two ciphertexts ct0 = (c0,0,c0,1) and ct1 =
(c1,0,c1,1) is (c0,0 + c1,0,c0,1 + c1,1). The addition operator +
here denotes an element-wise addition of two polynomials.
Homomorphic Multiplication: The multiplication result be-
tween one ciphertext ct and one cleartext m is (c0 ∗m,c1 ∗m),
where ∗ represents polynomial multiplications. However, the
homomorphic multiplication operation between two cipher-
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texts is more complicated since multiplication between the
above ct0 and ct1 results in a ciphertext ct′ with three ele-
ments:

ct′ = (c0,0 ∗ c1,0,c0,0 ∗ c1,1 + c0,1 ∗ c1,0,c0,1 ∗ c1,1) (1)
To turn the ciphertext back into two elements for future

ciphertext computation with consistent form, we have to per-
form ciphertext maintenance operation – key-switching – to
relinearize the ciphertext. We will introduce the key-switching
operation later.
Rotation: CKKS exploits the idea of SIMD (i.e., batching)
by packing multiple cleartexts in a single vector, which is
further encrypted as a single ciphertext. Although it is effi-
cient for most operations, it requires homomorphic ciphertext
rotation to perform intra-batch calculations. The ciphertext
rotation consist of two operations. First, it performs automor-
phisms operation, which is a permutation over coefficients
of polynomials for both ciphertext ct and secret key s. Sec-
ond, key-switching is performed to convert the permutated
ciphertext into the final result.

Besides the aforementioned homomorphic evaluation oper-
ations, FHE schemes have to perform some ciphertext main-
tenance operations to preserve the correctness of these opera-
tions. Two of the most important operations are key-switching
and bootstrapping.
Key-switching: As its name implies, the key-switching op-
eration homomorphically switches the secret key of a cipher-
text while keeping the corresponding cleartext unchanged.
Therefore, the key-switching operation is extensively used
in homomorphic operations, such as multiplication, rotation,
etc., to keep the results correct. The key-switching operation
accounts for a significant portion of the overall computation
time due to the inherent complexity involved in its internal
computations.
Bootstrapping: After performing homomorphic operations,
especially the multiplication operation, the noise of a cipher-
text increase. When too many operations are performed, the
noise will overflow, leading to incorrect results after decryp-
tion. We call the maximum number of consecutive homomor-
phic multiplications allowed as the multiplicative level/bud-
get. Therefore, before the number of operations exceeds the
multiplicative level, the bootstrapping operation is needed
to "refresh" the noise of ciphertexts by homomorphically re-
encrypting the old ciphertexts to generate a fresh one.

Bootstrapping is the most complicated operation in
FHE, which involves many other operations including key-
switching. If used, bootstrapping will considerably determine
the performance of the overall performance of a FHE scheme.

Finally, we discuss the cryptographic parameter choices
of FHE schemes. There are several important parameters to
determine: (1) the polynomial degree N; (2) the range of
the coefficients of a the polynomial. Since CKKS is built on
a polynomial ring, the range of the coefficients is decided
by the modulus Q. 3) the modulus P used in keys. To en-
sure security, N/ logPQ must be over a certain threshold, for

example, 128 bits [12]. Moreover, Q determines the multi-
plicative level/budget, and a larger Q generally leads to more
multiplicative levels. For example, multiplicative level of 16
requires Q to be around 512. Therefore, to satisfy both high se-
curity and high multiplicative levels, a larger N is also needed,
which inevitably causes inflated ciphertexts.

2.2 General Optimizations for FHE Implemen-
tations

This section introduces three general optimization techniques
used by modern FHE implementations.
NTT/iNTT: To accelerate polynomial multiplications, the
Number Theoretic Transform (NTT) and the inverse Num-
ber Theoretic Transform (iNTT) operations are used. The
NTT/iNTT lowers the time complexity of polynomial multi-
plications from O(n2) to O(n logn), where n is the degree of
a polynomial. Readers can regard NTT/iNTT as Fast Fourier
Transform over finite field. The basic operation of NTT/iNTT
is the butterfly operation [17, 22].
RNS Decomposition: To reduce computation complexity in
CKKS, large modulus Q and P are decomposed into the prod-
uct of several smaller co-prime moduli: Q = q0q1...qL and
P = p0 p1...pα. A set containing multiple co-prime moduli
{q0,q1, · · ·} is called an RNS basis. Following the Chinese
Reminder Theorem [21], a large integer can be represented
by taking its modulus results with respect to all moduli in
the RNS basis. This representation is referred to as the RNS
representation of the integer.
Fast Basis Conversion (BConv) : Some FHE operations in-
volve the conversion (switching) of modulus, which requires
special operations under RNS representation. For example,
the Fast Basis Conversion (BConv) approximates the modulus
switching by converting an integer from the original RNS ba-
sis to a new basis. BConv mainly consists of multiple modular
multiplications and independent summations.

2.3 Prior FHE Accelerators
One key problem restricting FHE from practical deployment
is its inefficiency issue. Even highly optimized FHE schemes
suffer from five orders of magnitudes slower performance than
cleartexts computation [47]. To solve the problem, various
FHE accelerators are proposed [3,7,20,27,29,30,39–41]. We
categorize them based on the employed hardware platform.
FPGA: Some FHE accelerators leverage Field Pro-
grammable Gate Array (FPGA) as their hardware platform,
such as Intel HEXL-FPGA [3], HEAX [39], FAB [7]. How-
ever, due to the limitations of FPGA itself, e.g., limited pro-
grammable resources, low operational frequency and low
memory bandwidth, FPGA-based FHE accelerators cannot
satisfy the requirements of FHE schemes, which are both com-
putation and memory intensive. Therefore, their performance
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is far from optimal.
GPGPU: General Purpose GPU (GPGPU) has been exten-
sively adopted to offload AI-related applications. Due to their
relatively good performance to accelerate data-parallel appli-
cations, researchers also utilize GPGPUs to accelerate FHE
applications, such as 100× [27], TensorFHE [20], etc. How-
ever, as revealed in [46], GPGPU suffers from architectural
deficiency when handling inflated data, causing impractical
performance. Moreover, large power consumption of GPGPU
is another drawback of these solutions.
ASIC: Recently, people have begun to explore Application
Specific Integrated Circuit (ASIC) for superb performance.
F1 is the first programmable FHE accelerator implemented
with ASIC [40], which can outperform software FHE imple-
mentations by 5400× on average. However, due to the lack
of efficient bootstrapping, F1 can only deliver ideal accelera-
tion for shallow FHE workloads. Later, CraterLake [41] and
BTS [30] were proposed to support full bootstrapping and
both employ massive computation units, such as NTT/iNTT,
and considerable amounts of on-chip memory. ARK [29] is
the successor of them and it further improves the bootstrap-
ping performance by an algorithm-architecture co-design.

Existing development trend of FHE accelerators is to sup-
port bootstrapping, thus mainly targeting improving the per-
formance of deep FHE workloads. However, in this paper,
we argue that real-world FHE workloads are highly mixed of
shallow and deep ones, thus significant opportunities exist to
enhance the performance of existing FHE accelerators by con-
sidering how to simultaneously accelerate both workloads.

3 Motivation

In this section, we first introduce the nature of FHE work-
loads that they are highly mixed — some of the workloads
require bootstrapping while some do not (§3.1). Second, we
will demonstrate how different cryptographic parameters im-
pact the end-to-end performance, and present the appropriate
parameter choices for both workloads (§3.2). Third, we show
that both hardware pipeline design and scheduling policies
are completely different for both workloads (§3.3).

3.1 Mixed FHE Workloads

FHE workloads exhibit a high degree of variability in real-
world scenarios, encompassing both bootstrapping and non-
bootstrapping requirements. In this paper, similar to [41], we
call workloads that require bootstrapping as deep workloads
and those without bootstrapping as shallow workloads.

Shallow FHE workloads are common in real-world. First,
some FHE workloads do not require very deep multiplications
by themselves, such as database query [1], private informa-
tion retrieval [8], Beaver’s multiplication triples generation
for secret sharing [38], federated learning [42], shallow neural

212 213 214 215 216 217

Matrix Multiplication 101 192 192 192 192 192
DBTable Lookup - - 399 575 653 653
Logistic Regression - - - 816 1550 3125
LSTM - - - 821 1536 2901

Table 2: The logPQ setting used in the paper.

network inference [11], etc. Second, people also try to avoid
bootstrapping by introducing some stochastic designs for even
more complicated applications to preserve acceptable perfor-
mance. For example, Sphinx synthesizes FHE and differential
privacy to achieve a uniformed framework for neural network
training and inference without bootstrapping (but requires
decryption and re-cryption at client side) [45].

With the increasing requirements of applying privacy-
preserving technologies to more complicated applications,
deep FHE workloads also become widely adopted. One typi-
cal example is machine learning training based on pure FHE,
such as FHE-protected logistic regression training [24], FHE-
protected deep neural networking training [34], etc.

FHE accelerators, as an essential infrastructure, should
deliver optimal acceleration for both workloads simultane-
ously. However, in the following sections, we will demon-
strate that these workloads require different choices of cryp-
tographic parameters (§3.2), pipeline designs and scheduling
policies (§3.3), thus causing sub-optimal performance for
existing FHE accelerators which utilize a homogeneous ar-
chitecture.

3.2 Impact of Cryptographic Parameters
First, we qualitatively introduce the relationship of some im-
portant parameters. As discussed in §2.1, for deep FHE work-
loads, to support bootstrapping, a large multiplication depth L
is needed since (1) frequent bootstrapping should be avoided
and (2) bootstrapping itself consumes massive multiplication
depths. Moreover, when a large L is chosen, a large poly-
nomial degree N is also required to ensure security [12]. In
contrast, for shallow workloads, the N and L are usually much
smaller. Next, we present how these parameters impact the
performance of both shallow and deep workloads through
testbed experiments. Especially, we implement the follow-
ing four real-world workloads with Lattigo [4], a widely-
adopted FHE library.
• Matrix Multiplication: It’s a shallow FHE workloads. We

multiply two matrix of 100×1000 and 1000×10 elements
encrypted via CKKS, respectively.

• DBTable Lookup: It’s a shallow FHE workloads. We refer
the implementation used in [1] and use BGV to encrypt the
data. We have modified the algorithm to use binary encod-
ing to encode the key to reduce the required multiplication
levels.

• Logistic Regression: It’s a deep FHE workload and the
implementation is based on [24]. We measure the train-
ing time of a single batch with up to 197 features and 50
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Figure 1: Performance of FHE Workloads.

samples per batch. We perform bootstrapping once the
multiplication level is exhausted.

• LSTM: Long Short-Term Memory (LSTM) is a recurrent
neural network (RNN), which is widely adopted to learn the
long-term dependencies, especially in sequence prediction
problems. In this paper, we follow the implementation
in [36] to use CKKS to protected the parameters of a LSTM
network. It’s also a deep FHE workload.

In every workload, we fix the security level to be 128bit
and vary the N from 212 to 217. Therefore, to ensure the
128bit security level, the maximum logPQ should vary from
101 to 3125 accordingly. We will choose the most suitable
multiplication depth L for each workloads while not violating
the constraints of maximum logPQ. Another cryptographic
parameter that affects the performance of bootstrapping is
the decomposition number, dnum, which is used in the key-
switching operations. As suggested in some papers [27,30], to
support efficient bootstrapping for deep workloads, we usually
choose a small dnum. However, a small dnum may violate
the security guarantee. Thus, we try to choose a small dnum
that will not violate the security guarantee when N and L are
fixed. The detailed settings of each workload are shown in
Table 2.

In the conducted experiments, we focused on measuring
the execution time of the FHE workloads. Specifically, for the
Logistic Regression workload, we calculated the average exe-
cution time of one iteration. As for the LSTM workload, we
reported the execution time of one LSTM unit. The obtained
results are illustrated in Figure 1. In summary, we have the
following observations:

• Shallow workloads, such as Matrix Multiplication (Fig-
ure 1a) and DBTable Lookup (Figure 1b), can achieve ideal
performance with small N and L. A large N and L in turn
leads to performance degradation. For example, for Matrix
Multiplication, when the N equals 213, the application can
simultaneously achieve adequate accuracy (60bit) while
keeping efficient. For DBTable Lookup, when the N equals
214, it can achieve highly efficient performance. With anal-
ysis on more shallow workloads (which are not shown due
to limited space), we find N ≤ 214 is a reasonable value for
shallow FHE workloads.

• Deep workloads, such as Logistic Regression (Figure 1c)
and LSTM (Figure 1d), require a large N and L to work
properly. For example, if the N < 215, the Logistic Regres-

5 10 15 20 25 30
# Cooperated Computation Clusters

0

0.5

1

T
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e
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LoLa-MNIST with Unencrypted Weights

Figure 2: The performance of shallow FHE workloads.

sion cannot even finish one iteration, leading to task failure.
Moreover, when the N (also logPQ) becomes larger, the
performance of the FHE application first improves, then
drops. The reason is that if N is small, the multiplicative
depth is low. As a result, the bootstrapping is too frequent,
degrading the overall performance. In contrast, if N is too
large, the performance also degrades due to the increased
complexity of cryptographic system. In summary, we ob-
serve that 215 ≤ N ≤ 216 is a sweet range for most deep
FHE workloads.
Consequently, FHE accelerators designed for shallow work-

loads, such as F1 [40], either fail to run deep workloads or
suffer from enormous performance reduction. The reason is
that, since they are optimized for shallow workloads, they
usually choose to support a small N and L. For example, F1
supports N ≤ 214. Thus, deep workloads, such as Logistic
Regression, cannot even run when the N ≤ 214. Furthermore,
as pointed out in the previous work [41], if we arbitrarily in-
crease the N of F1 to 216 (denoted as F1+ in Table 3 of [41]),
its performance is still more than 10× slower than expected.
The reason is that it lacks an efficient bootstrapping imple-
mentation (details in §3.3).

3.3 Impact of Pipeline Design & Scheduling
As discussed in previous literature [47], bootstrapping occu-
pies more than 80% of the total computation time. Therefore,
efficiently accelerating bootstrapping is a key to improving
the performance of deep FHE workloads.

Recent works have explored to build a dedicated iNTT
→ BConv → NTT pipeline to enable efficient bootstrapping
computation for deep workloads [28–30, 41]. Moreover, the
pipeline execution involves the cooperation of all computation
clusters due to the heavy workload. Therefore, the scheduler
of recent FHE accelerators tends to schedule the whole accel-
erator to expedite one dedicated deep FHE workload, and a
development trend is to utilize more hardware resources for
better performance [28–30, 40, 41].
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On the contrary, in this paper, we find that for shallow
workloads, blindly allocating more hardware resources, e.g.,
computation clusters, does not lead to effective acceleration.
To demonstrate this, we use experiments to investigate how
the performance of two shallow FHE workloads changes
when we only increase the number of computation clusters
without changing the workloads. To align with most results in
previous works, we use LoLa-MNIST with and without Unen-
crypted Weights as workloads here (extensive details in §6.1).
The results are presented in Figure 2 and we can observe
that when we allocate more than four 128-bit NTT compu-
tation clusters to cooperatively accelerate one shallow FHE
workload, the performance improves very little. Instead, we
argue that for shallow FHE workloads, the optimal scheduling
policy is to distribute multiple shallow FHE workloads on
one accelerator in parallel while concurrently implementing
sufficient computation clusters.

As a result, if we use existing FHE accelerators that are
designed for deep FHE tasks to accelerate the shallow FHE
workloads, they can only handle one job simultaneously, lead-
ing to low data parallelism. Meanwhile, naïvely increasing
the number of clusters causes overwhelming chip area con-
sumption, which is impractical.

Conclusion: Existing FHE accelerators cannot consistently
achieve high performance facing real-world mixed FHE work-
loads. The crux lies in the fact that they all adopt a homoge-
neous design: their target cryptographic parameters, pipeline
design and scheduling policy are optimized for either shallow
or deep FHE workload.

3.4 Two Different Architectures?

A straightforward approach would be to utilize two distinct
architectures for shallow and deep workloads, respectively.
However, this solution either incurs significantly higher pro-
duction costs or results in degraded performance, along with
practical deployment challenges.

• Using two ASICs: One option is to produce two separate
ASICs, each dedicated to either shallow or deep workloads.
However, this approach nearly doubles production costs
due to the non-recurring engineering (NRE) costs—such
as design, verification, and mask set creation—that are
required for each chip.

• Using CPU/GPU/FPGA to handle shallow workloads: An-
other option is to use a dedicated ASIC for deep FHE
workloads and rely on CPU/GPU/FPGA for shallow work-
loads. However, as demonstrated in §6, CPU/GPU/FPGA
platforms fail to deliver competitive performance. Addi-
tionally, GPUs and FPGAs introduce further costs.

Furthermore, both of these solutions present deployment chal-
lenges, including increased PCIe slot usage, higher failure
rates, etc.
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Figure 3: FLASH-FHE’s architectural overview.

4 FLASH-FHE

To solve this problem, we propose FLASH-FHE, a practical
FHE accelerator with a heterogeneous architecture. Instead
of relying on homogeneous computation clusters, FLASH-FHE
incorporates two types of clusters: bootstrappable and swift.
In terms of cryptographic parameters and pipeline design,
these clusters are optimized for deep and shallow workloads,
respectively. We organize one bootstrappable and two swift
clusters as one cluster affiliation and FLASH-FHE has eight
affiliations in total (§4.1). Then, FLASH-FHE’s scheduler tries
to maximize the parallelism for shallow FHE workloads by
assigning one shallow workload to only one cluster affiliation,
which can deliver effective acceleration by decomposing one
bootstrappable cluster into multiple suitable pipelines for shal-
low workloads. In this way, FLASH-FHE can use eight cluster
affiliations to achieve a parallelism of eight (§4.2). Further-
more, we introduce the design of a hierarchical data cache that
is shared between the bootstrappable and swift clusters. This
approach allows us to enhance performance by allocating ad-
ditional computation clusters without significantly increasing
the demand for on-chip memory resources (§4.3).
Architectural Overview: Figure 3 illustrates the architec-
tural overview of FLASH-FHE. It comprises three key compo-
nents: computation clusters, control subsystem, and memory
subsystem. As previously mentioned, the computation clus-
ters consist of eight cluster affiliations, each housing one boot-
strappable and two swift clusters. The clusters are connected
using a multi-leveled transpose module. The core module of
the control subsystem is the scheduler, and FLASH-FHE also
leverages PCIe and memory controller for auxiliary functions.
In terms of the memory subsystem, FLASH-FHE employs two
high-bandwidth memory (HBM) [2] units for off-chip data
storage, and incorporates a hierarchical data cache (L1/L2)
for on-chip storage.

4.1 Computation Clusters
In this section, we first introduce the design of the two types
of computation clusters used in FLASH-FHE, and then present
how we use cluster affiliation to organize them.
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Figure 4: (i)NTT workflow. The (i)NTT pipeline in
FLASH-FHE supports multiple entrances and multiple exits
to enable efficient execution of varying-point NTTs.

Bootstrappable Clusters: To ensure efficient bootstrapping,
we implement a complete iNTT → BConv → NTT pipeline
for bootstrappable clusters, following previous works [28–
30, 41]. Within a bootstrappable cluster, we incorporate one
(i)NTT pipeline and one BConv module.

The (i)NTT pipeline consists of a four-step (i)NTT1 module
with N = 216, encompassing a

√
N-point (i.e., 28-point) stan-

dard (i)NTT circuit, a multiplication circuit, and a transpose
circuit (L1, more details in the following sections). A sim-
plified example of the NTT workflow for N = 24 is depicted
in Figure 4. The input data undergoes the standard (i)NTT
circuit in the first step, followed by processing through the
multiplication and transpose circuits. Finally, the transposed
data is fed back into the (i)NTT circuit for a second round, re-
sulting in the final results. To accommodate dynamic changes
in the value of N, we extend the (i)NTT circuit to support mul-
tiple entry and exit points. This allows data to be injected or
fetched at any position within the circuit, enabling the pipeline
to support (i)NTT with N ≤ 216. One example is shown in the
right part of Figure 4, we can use the 4-point NTT pipeline to
support two parallel 2-point NTT computations. Therefore,
our design enables the decomposition of the large (i)NTT
circuit into multiple parallel smaller (i)NTT circuits, boost-
ing the acceleration of workloads requiring a smaller NTT,
e.g., shallow workload. As a result, FLASH-FHE’s bootstrap-
pable computation clusters can support both deep FHE work-
loads and some parallel shallow workloads (further details of
scheduling policy will be discussed in §4.2).

Figure 5 presents the physical design of the bootstrappable
computation cluster. The left part demonstrates the above-
introduced iNTT pipeline. The right part is the BConv mod-
ule, which performs lsub parallel modular multiplications and
sums their results to obtain the converted RNS basis. We
choose lsub = 60 to maximize the performance of BConv in
the key-switching pipeline. The two parts are connected via a
L1-transpose module, which will be introduced later in this
section. To accommodate various modes, all modules within
the bootstrappable cluster can be bypassed. For instance, when
accelerating shallow workloads, the BConv module can be
entirely bypassed since shallow FHE workloads do not re-
quire the key-switching operation which involves the iNTT

1The four-step NTT algorithm has been comprehensively introduced in
previous works [40,41,47], thus we omit the detailed algorithm in this paper.

→ BConv → NTT pipeline.

Swift Clusters: The swift computation clusters are dedicated
to shallow workloads. Therefore, the BConv module is not
allocated within the swift clusters. Instead, we design one
(i)NTT pipeline with N = 214 in each swift cluster, as N = 214

is sufficient for shallow workloads at the 128-bit security level.
Similar to the bootstrappable clusters, the (i)NTT pipeline
within the swift clusters comprises a 27-point standard (i)NTT
circuit, a multiplication circuit, and a transpose circuit.

Cluster Affiliation: In the design of FLASH-FHE, one boot-
strappable cluster and two swift clusters are organized as a
cluster affiliation, and we allocate eight cluster affiliations in
total. The choice of the one-to-two ratio is guided by both
the parameter considerations for the clusters and hardware
design efficiency. As previously mentioned, based on the anal-
ysis of representative workloads, the bootstrappable cluster
is equipped with a 28-point (i)NTT circuit, while the swift
cluster contains a 27-point (i)NTT circuit. This configuration
allows for a straightforward and efficient connection of one 28-
point (i)NTT circuit with two 27-point (i)NTT circuits using a
transpose module (further details are provided in Multi-level
Transpose). Additionally, the four 27-point (i)NTT circuits
within a cluster affiliation can effectively accelerate a single
shallow FHE workload without requiring the involvement of
other cluster affiliations.

It’s important to note that this ratio is not dictated by the
proportion of deep to shallow FHE workloads in mixed work-
loads. Instead, FLASH-FHE utilizes the scheduler to handle
dynamic workloads (more details in §4.2).

As a result, different from previous FHE accelerators that
use all computation clusters to accelerate one FHE work-
loads [28–30, 40, 41], either shallow or deep, FLASH-FHE uti-
lizes eight cluster affiliations to provide sufficient parallelism
for shallow FHE workloads. Worth noting, the computation
clusters within a single cluster affiliation share the valuable on-
chip L1 cache. As a result, the increased parallelism achieved
by adding more swift computation clusters does not come
at the expense of significant resource consumption. We will
cover more details of this part in §4.3.

On the contrary, when it comes to accelerating deep FHE
workloads, FLASH-FHE does not employ the swift clusters.
Instead, it utilizes all bootstrappable clusters across cluster
affiliations to achieve optimal acceleration for bootstrapping
operations. Due to the relatively minor computation resource
consumption of the swift clusters, only < 7% hardware re-
sources are not being utilized, as demonstrated in §6.2.

Other Modules: Similar to previous works [41], we have im-
plemented real-time key generation and automorphism mod-
ules to respectively mitigate off-chip memory bandwidth bot-
tlenecks and accelerate the rotation operations.

Multi-level Transpose: In this section, we present our ap-
proach of utilizing a multi-level transpose module to establish
connectivity between computation clusters both within and
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Figure 5: The physical design of the bootstrappable computa-
tion cluster.

across cluster affiliations. The goal of our multi-level trans-
pose is to support both shallow and deep working modes with
a varying N from 211 to 216.

As shown in Figure 6, the transpose module in FLASH-FHE
has three levels. When handling shallow FHE workloads,
only L1 and L2 transpose modules are used since FLASH-FHE
uses one cluster affiliation to accelerate one shallow task.
On the other hand, the L1 and L3 transpose modules are
utilized when accelerating a deep workload. We also design a
data distributor module to ensure correct data distribution in
different working modes.

Our design principle for the transpose module in
FLASH-FHE is to concentrate the design complexity in the
L1 transpose module, as it primarily deals with wire place-
ment within a smaller area. In order to mitigate global wiring
complexity, we employ fixed and static wiring for implement-
ing the L2 and L3 transpose modules.

The purpose of L1 transpose is to implement local trans-
pose inside each cluster. As we have eight cluster affiliations,
the N-degree polynomials in each bootstrappable cluster can
be regarded as 256×D matrices, where D = N/(256∗8) de-
notes the input/output length of the NTT pipeline. Similarly,
since there are two swift clusters in each cluster affiliations,
the polynomials in a swift cluster can be viewed as 128×D
matrices. Inspired by the similarity, we use the D×D matrix
as the basic transpose unit in L1 transpose.

The L1 transpose module is built up over multiple building
blocks. As shown in Figure 7, each of the blocks has 32 input
ports and log232 switching stages, making it possible to con-
currently transpose 32/D D×D matrices. In bootstrappable
clusters, L1 transpose contains eight building blocks, while
in swift clusters, it contains four blocks.

As we support N ∈ [211,216], D ∈ [1,32] is also a varying
value. The detailed workflow of our L1 transpose module
includes the following steps to dynamically support different
N and D:

1. The delay module delays i cycles for the i-th input (the
input data is from L1 cache).

2. The cnt module is configured as an auto-incremental
counter. The MUX module at stage j uses the j-th bit (0 or
1) of the cnt module to determine its data selection. After
passing the MUX at stage 0, the L1 transpose building

Bootstrappable Cluster

L2 Transpose

Cluster Affiliation 0
Cluster Affiliation 1

L3 Transpose

Cluster Affiliation 2

Cluster Affiliation 3

Cluster Affiliation 7

…

L1 Transpose

Swift Cluster
L1 Transpose

Swift Cluster
L1 Transpose

Data Distributor M
odule

Figure 6: Overall design of multi-level transpose.

block transposes 16 2×2 matrices. Next, after passing the
MUX at stage 1, it transposes eight 4×4 matrices. Similar
logic applies util the MUX at stage 4 achieves a complete
32×32 matrix transpose operation.

3. Since the D is a changing value, we do not always require
a complete 32×32 transpose. We can use the output MUX
to select the required output from the pipeline. For example,
we can configure the pipeline of the building block to exist
at stage 1 to compute a case where D = 4.

The advantages of our design are two-fold: (1) It can
achieve a full pipelining, which maximizes the performance.
(2) It can achieve high flexibility by only configuring the
MUXs, i.e., how to choose data based on bit 0 or 1.

After introducing how L1 transpose module works, we
next provide a brief introduction to other modules since they
mainly work in a static mode. A detailed workflow and exam-
ples of our transpose module are provided in supplemental
materials.

The data distribution modules takes a fixed dual-working
mode to distribute the data. For shallow workloads, it dis-
tributes data within one cluster affiliation (regard as four clus-
ters with index from 0 to 3), while for deep workloads, it
distributes data across all bootstrappable clusters (eight clus-
ters). Taking an 8192-point NTT in shallow workloads as an
example, based on four-step NTT algorithm, we can regard it
as a 128×64 matrix. Then the data distribution module sends
the data column by column (each column contains 128 rows
of data) to four clusters. Specifically, the i-th column is sent
to L1 cache of the (i mod 4)-th cluster.

The L1-to-L2 transpose connection follows a fixed wiring
to achieve a matrix transpose among four clusters. The L2
transpose module has 512 ports in total. The port i of the L1
transpose within cluster j is connected to the (4× i+ j)-th
port of L2 transpose. The L1-to-L3 transpose also follows a
fixed connection and the L3 transpose module has 2048 ports
in total. Similarly, the port i of the L1 transpose within cluster
j is connected to the (8× i+ j)-th port.

4.2 Scheduler

FLASH-FHE’s scheduler consists of two parts: a software
driver that generates control instructions, and a hardware con-
troller that executes these instructions. When it comes to
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compound operations, such as key-switching, which contains
multiple basic operations, FLASH-FHE’s scheduler optimizes
their workflows to increase the cache hit ratio. This optimiza-
tion is achieved purely through hardware implementation. In
the following section, we will delve into these details in depth.

The software driver provides standard APIs to integrate
FLASH-FHE with upper-layer FHE libraries like Lattigo and
SEAL. It takes key cryptographic parameters, such as N and
L, as inputs. Similar to previous works [28–30, 40, 41], the
FLASH-FHE driver generates static control instructions as out-
put. Since FHE workloads are oblivious, meaning that the
workflow of an FHE program is independent of its input data,
all operations and their dependencies are known in advance.
As a result, the FLASH-FHE software driver can generate in-
structions that pipeline computation modules in FLASH-FHE,
mitigating most overhead caused by data read/write opera-
tions.

However, unlike previous approaches, FLASH-FHE’s in-
structions explicitly mark the entrances and exits of the cor-
responding computation cluster’s (i)NTT pipeline. The hard-
ware controller follows these instructions to move input data
to specific caches, perform computations, and output results
to caches or external memory.

The goal of FLASH-FHE is to provide optimal scheduling
policy for both shallow and deep FHE workloads. To achieve
it, the scheduler takes the following steps:
1. FLASH-FHE analyzes the cryptographic parameters to de-

termine whether the FHE workloads are deep or shallow.
2. For shallow workloads, the goal of the scheduler is to im-

prove parallelism. Therefore, FLASH-FHE driver mainly
generates instructions to execute parallel small-point
(i)NTTs. No data exchange between cluster affiliations
is scheduled.

3. For deep workloads, FLASH-FHE driver generates instruc-
tions of large-point (i)NTTs with BConv operations, which
will be executed on all bootstrappable clusters to acceler-
ate the bootstrapping operation as much as possible. We
do not use swift computation clusters in deep workloads
due to redundant data movement among multiple (i)NTT
pipelines. Currently, we do not use swift computation clus-
ters to execute these instructions, As we will show in §6.2,
since the swift clusters only consume less than 7% chip

area, it does not cause a considerable hardware resource
underutilization. How to efficient combine multiple swift
clusters to execute large-point (i)NTTs is one of our future
works.

Preemptive Scheduling: Our scheduler supports preemptive
scheduling to efficiently manage mixed workloads. For exam-
ple, if a deep FHE task is running on FLASH-FHE and shallow
FHE tasks arrive, the deep task can be preempted, allowing
the shallow tasks to run first and avoiding the convoy effect.
This results in improved average task completion time. At the
low level, we provide a priority-based preemptive mechanism,
enabling users to assign different priorities to FHE tasks and
simulate various scheduling policies, such as shortest-job-first.
Preemption is implemented by inserting instructions to tem-
porarily transfer data from SRAM to HBM, loading it back
on-demand between tasks.

4.3 Shared Data Cache

In this section, we will begin by introducing the hierarchical
caching structure implemented in FLASH-FHE. Then, we will
delve into how we use algorithm-level knowledge to deter-
mine the appropriate cache volume.
Hierarchical Caching Structure: The hierarchical cache
contains one shared L1 cache in each cluster affiliation and
one global L2 cache shared by all affiliations. The L1 caches
are designed to facilitate the pipelined execution of individ-
ual basic operations within each affiliation, such as NTT or
BConv. In FLASH-FHE, we allocate 8MB SRAM as one L1
cache. In the case of deep workloads, where workloads are
distributed among eight affiliations, the L1 cache in each affil-
iation is capable of supporting polynomial operations with a
size of N ≤ 216/8. Moreover, for shallow applications where
the size of ciphertexts and keys is significantly smaller, the
L1 cache remains sufficient to support one complete shallow
workload.

The L2 cache is designed to store data when cluster affili-
ations need to cooperate with each other in the case of deep
FHE workloads. The volume of L2 cache has a significant
impact on the overall performance of deep FHE workloads. In
our paper, we follow an algorithm-guided approach to decide
the volume of L2 cache.

After thoroughly analyzing the memory space require-
ments of operations in deep workflows, we determine that
key-switching (the version used in bootstrapping that re-
quires an iNTT → BConv → NTT pipeline) is the most
time-consuming operation, necessitating a significant amount
of memory space to cache keys and intermediate data. The
performance of key-switching with varying total cache vol-
umes is depicted in Figure 8. We evaluate three common
dnum settings, namely dnum = 1,2,3. Our observations in-
dicate that for dnum = 1, a prevalent setting in most deep
learning applications, the optimal performance is achieved
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Figure 8: Performance of key-switching over varying cache
volume.

when the total cache volume reaches 320MB. Allocating ad-
ditional L2 cache beyond this point does not yield further
performance improvements. Furthermore, 320MB serves as
a reasonable setting for dnum = 2,3, as it does not result in
a significant degradation from optimal acceleration. In our
paper, FLASH-FHE targets technology nodes of both 14/12nm
and 7nm. Consequently, we have chosen to set the total cache
volume to 320MB SRAM, which is a reasonable value for
production. However, we suggest that when utilizing a more
advanced technology node, such as 3nm, a larger cache could
be allocated to further accelerate the key-switching operation
for dnum = 2,3.

The L2 caches are also utilized to store output data that may
be reused by subsequent compound operations to eliminate
slow off-chip I/O. We use instruction preprocess technology
to achieve the goal.

5 Implementation

We implement FLASH-FHE in RTL and synthesize it with
both an open-sourced 7nm predictive process design kit –
ASAP7 [16] – and a commercial 14/12nm technology library.
To achieve a balance between the power consumption and chip
area, we choose 1.0 GHz to synthesize most of FLASH-FHE’s
components, including FLASH-FHE’s swift and bootstrappable
clusters, hardware controller, etc. The data cache run double
pumped at 2.0 GHz, which enables using a single-ported
SRAM while serving up to two accesses per clock cycle.

We use HBM2e [2] as the off-chip memory. We use two
HBM2e PHYs and each can reach a bandwidth of 512 GB/s.
Meanwhile, we use the reported data in previous works [30,
41] to estimate the area and power of the HBM2e memory.

For the software part, we modify the Lattigo library [4]
and SEAL library [5] (for shallow workloads only) to integrate
FLASH-FHE’s functionalities into it, including the software
driver, etc. We also design command-line tools to debug and
test FLASH-FHE. We leverage PCIe 5.0 interface for the com-
munication between FLASH-FHE and the host since it can offer
sufficient bandwidth [6].

6 Evaluation

In this section, we mainly evaluate FLASH-FHE to demonstrate
its effectiveness towards mixed FHE workloads. We highlight
the following evaluation results.

Components 7nm (mm2) 14/12nm (mm2)

128-point NTT 0.50 1.42
Modular Mul/Add 0.31 0.91
Total. Swift Clusters
(16×NTT, 16×Mod. M/A) 12.96 37.28

256-point NTT 0.99 2.81
Modular Mul/Add 0.63 1.81
BConv 0.69 2.01
Total. Bootstrappable Clusters
(8×NTT, 8×Mod. M/A, 60×BConv) 55.09 160.56

Key Generation 0.73 3.00
Automorphism 3.21 9.23
Transpose 0.13 0.37
SRAMs in Clusters 19.50 96.6
Hierarchical Cache 58.00 185.5
2×HBM2e 29.80 29.80

Total. FLASH-FHE 178.69 519.34

Table 3: Area analysis with both 7nm and 14/12nm technol-
ogy nodes (Mod. M/A denotes modular multiplication and
addition).

• FLASH-FHE achieves a comparable chip area with other
FHE accelerators. The extra area of swift clusters con-
sumes < 7% of the total area (§6.2).

• For deep FHE workloads, FLASH-FHE achieves an average
of 1.4× and 11.2× performance gain than CraterLake and
F1+, respectively (§6.3).

• For shallow FHE workloads, due to FLASH-FHE’s parallel
scheduling policy, its performance can achieve up to 8.0×
of existing FHE accelerators (§6.3).

6.1 Methodology

Evaluation Method: Since we have not yet taped out
FLASH-FHE and are unable to use an FPGA to implement
the entire FLASH-FHE logic, similar to previous works [28–
30, 40, 41], we evaluate FLASH-FHE using a cycle-accurate
simulator.
Compared Schemes: We mainly compare FLASH-FHE with
the following schemes:
• F1+ [14/12nm]: F1+ is a upgraded version of F1 [40]. Sim-

ilar to the scheme used in [41], F1+ is scaled to a 256 MB
32-bank scratchpad, 32 compute clusters with 256 lanes
each, and 1 MB register file per cluster. However, F1+ suf-
fers from an unoptimized version of key-switching, thus
leading to suboptimal performance for deep FHE work-
loads. The area of F1+ is 636mm2.

• CraterLake [14/12nm]: CraterLake is the succeeder of
F1, which contain 8 256-lane computation group. To com-
pensate the drawback of F1, CraterLake makes all its com-
puting clusters to support bootstrapping by designing an
efficient iNTT→BConv→NTT pipeline for all of its en-
gines. The chip area of CraterLake is 472mm2.
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• ARK [7nm]: ARK leverages a novel algorithm-
architecture co-design to accelerate bootstrapping. The
chip area of ARK is 418mm2.

• SHARP [7nm]: SHARP utilizes a short word length to
reduce the required chip area. The chip area of SHARP is
179mm2.

• Other GPU/FPGA Solutions: We primarily com-
pare FLASH-FHE with one GPU-based accelerator,
TensorFHE [20], and two FPGA-based accelerators,
HEAX [39] and FAB [7].

Due to the unavailability of open-source implementations
of the FHE accelerators, it is not possible to reproduce their
reported performance results independently. Therefore, for
the purpose of a fair comparison, we rely on the data provided
in the original papers of CraterLake [41], ARK [29], and
SHARP [28], similar to previous research works. By utilizing
the data from these papers, we aim to establish a meaningful
and consistent basis for comparison between FLASH-FHE and
the aforementioned FHE accelerators.
FHE Applications: We mainly evaluate FLASH-FHE with
three shallow and four deep FHE applications. Besides the
Logistic Regression and LSTM applications mentioned in §3,
we further evaluate the following applications:

• LoLa-CIFAR with Unencrypted Weights: LoLa is a low
latency privacy-preserving neural network [11]. LoLa con-
tains three different variants and all of them are shallow
FHE workloads. The first variant is with the CIFAR-10
dataset [31]. The parameters of the neural network are not
encrypted. We set N = 213 and L = 7.

• LoLa-MNIST with Unencrypted Weights: This is the
second variant of LoLa with MNIST dataset [32]. The
parameters of the neural network are not encrypted. We
choose N = 213 and L = 6.

• LoLa-MNIST with Encrypted Weights: This is the third
variant of LoLa with MNIST dataset, which further adopts
encrypted weights for the neural network. We set N = 213

and L = 6 for this application.

• Packed Bootstrapping: Packed bootstrapping is a deep
workload. Similar to [41], the packed bootstrapping takes a
ciphertext with N = 216 and L = 3 as the initial parameters,
and then exhausts its multiplicative level by bringing L to
57. Afterwards, it performs bootstrapping to refresh the
multiplication level of the ciphertext. In packed bootstrap-
ping, different from unpacked bootstrapping, the ciphertext
uses all available slots, i.e., N/2. The packed bootstrapping
is also the bootstrapping algorithm in other deep workloads.
We set N = 216 and L = 57.

• ResNet-20: It’s a deep FHE workload performing neural
network inference with ResNet-20 [25], whose parameters
are encrypted via CKKS. We mainly refer the implementa-
tion mentioned in [33]. We set N = 216 and L = 41.

For LSTM, we set N = 216 and L = 13. For the Logistic
Regression evaluation, we will utilize batch sizes of both 256
and 1024, with a feature size of 256. We set N = 213 and
L = 33. These settings are chosen to align with the evaluation
parameters used in CraterLake and ARK.

6.2 Area Analysis
In this section, we present the area analysis for FLASH-FHE.
Following the approach of previous works such as BTS [30],
SHARP [28], and ARK [29], we employ FinCACTI [43] to
model the SRAMs and caches utilized in FLASH-FHE. The
results of the analysis are summarized in Table 3.

With the 14/12nm technology node, FLASH-FHE occupies
a total area of 519.34mm2, which is comparable to that of
CraterLake [41]. Notably, FLASH-FHE incorporates 16 swift
engines in its design, significantly enhancing the performance
of shallow FHE workloads, as demonstrated in §6.3.

Furthermore, the large performance gain is achieved only
with the addition of a relatively small portion of the chip
area (the logic circuits of swift clusters occupy less than 7% of
the total area) since swift clusters share the memory resources
of bootstrappable clusters.

As for other components, the logic circuits of FLASH-FHE’s
bootstrappable computation clusters account for 31.1% of the
area, while the total cache occupies 55.6%. Since FLASH-FHE
allots 320MB of cache to enhance the performance of key-
switching operation (refer §4.3 for more details), the SRAMs
consume slightly more chip area compared to other FHE
accelerators. For the 7nm technology node, the total chip area
of FLASH-FHE is 178.69mm2, which aligns with the estimated
scaling from 14/12nm to 7nm area (approximately 2.9×) [35].

6.3 Performance
In this section, we compare the performance of FLASH-FHE
with other typical FHE accelerators. First, we compare
FLASH-FHE synthesized with the 14/12nm technology node
against other FHE accelerators using the same technology,
namely CraterLake and F1+. Subsequently, we compare
FLASH-FHE implemented with the 7nm technology node with
ARK and SHARP, which is also based on the 7nm technology.
Additionally, we compare FLASH-FHE with an AMD Ryzen
Threadripper PRO 3975WX CPU, featuring 32 cores and 64
threads.
FLASH-FHE and CraterLake employ 128-bit security for all

deep FHE workloads and 80-bit security for shallow FHE
workloads, which we consider practical for production envi-
ronments. F1+ employs 80-bit security for all seven work-
loads. ARK and SHARP use 128-bit security for their two
deep FHE workloads.
Single Workload: We first evaluate all accelerators with
one single FHE workload at a time and the performance
of FLASH-FHE at the 14/12nm technology node is presented
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Figure 9: [14/12nm Technology Node] Performance of FLASH-FHE with four deep and
three shallow FHE applications.
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Figure 10: [7nm Technology Node]
Performance of FLASH-FHE.

in Figure 9. Here, we highlight the following results. First,
across all four deep workloads, FLASH-FHE can achieve an
average (geometric mean) speedup of 1.4× and 11.2× com-
pared to CraterLake and F1+, respectively. The performance
improvement over CraterLake is mainly due to the adequate
cache (320MB in FLASH-FHE v.s. 256MB in CraterLake),
which can boost the performance of key-switching opera-
tion (as shown in §4.3).

Second, for the three shallow FHE workloads, FLASH-FHE
can achieve a speedup of 0.4− 2.2× and 0.4− 4.2× com-
pared to CraterLake and F1, respectively. For the specific
scenarios of LoLa-MNIST with and without Unencrypted
Weights, it is worth noting that FLASH-FHE employs a value
of L = 6, while F1 and CraterLake utilize L = 4 since we
encounter difficulties in using L = 4 to launch the two ap-
plications. Consequently, it is important to acknowledge that
FLASH-FHE’s performance in this context is inferior to that
of CraterLake and F1+. However, in the subsequent sections,
we will show that even with a larger L setting, FLASH-FHE
can achieve significantly higher performance when there are
multiple shallow FHE workloads.

Next, we compare FLASH-FHE implemented with the 7nm
technology node against ARK and SHARP. Since ARK and
SHARP do not provide performance results specifically for
shallow FHE workloads, we focus our comparison on two
typical deep workloads: ResNet-20 and Logistic Regression.
Since some accelerators with the 7nm technology utilize dra-
matic chip area, we also show the metric of performance per
area in this part.

The evaluation results are presented in Figure 10, and
we highlight the following points. Compared to ARK,
FLASH-FHE achieves 42.3% better performance in Logistic
Regression but 21.6 worse performance in ResNet-20. How-
ever, FLASH-FHE achieves consistency higher performance
per area, from 1.49× to 1.78×. The reason is that although
ARK adopts an algorithm hardware co-design method to op-
timize the performance, it results in a dramatically larger
chip area, leading to much worse performance per chip
area. SHARP achieves better absolute performance and per-
formance per chip area than FLASH-FHE since it adopts a
short-word size optimization method, which is not utilized
in the current implementation of FLASH-FHE. Worth noting,
FLASH-FHE’s idea of leveraging a heterogeneous architecture

CPU

FLASH-FHE
Tensor

FHE FAB
HEAX

102

104

106

T
h
ro

u
g
h
p
u
t

G
P
U

F
P
G

A NTT HMUL

Figure 11: Performance of FLASH-FHE compared to represen-
tative GPU and FPGA solutions.

is orthogonal to the optimizations used in ARK and SHARP.
Therefore, we can combine FLASH-FHE with them to further
improve their performance for mixed FHE workloads.

Multiple Shallow Workloads: In this part, we evaluate
FLASH-FHE’s performance (implemented with 14/12nm tech-
nology node) when there are multiple shallow workloads. We
vary the number of shallow workloads from one to ten and
measure the average execution time. The results are shown in
Figure 12. We observe when there are more than three shal-
low workloads, FLASH-FHE can achieve a much better average
execution time than CraterLake even when FLASH-FHE uses
L = 6. The reason is that FLASH-FHE can execute multiple
shallow workloads in parallel while CraterLake can only use
a sequential scheduling policy due to its homogeneous design.
FLASH-FHE can achieve up to 8.0× speedup when all of its
cluster affiliations are utilized.

Comparison with GPU/FPGA: In this section, we highlight
FLASH-FHE’s advantages over GPU/FPGA solutions for shal-
low workloads. Due to the lack of data on shallow workloads
in previous works, we instead compare the performance of
NTT and Homomorphic Multiplication (HMUL), which are
the primary computations in shallow workloads and account
for the majority of execution time. For a fair comparison, the
evaluation is conducted using the same shallow parameters
as in previous works (i.e., N = 214, logPQ = 438). As shown
in Figure 11 (note the Y-axis is in log scale), FLASH-FHE
achieves more than 30× throughput (measured in number of
executed operations) compared to the state-of-the-art GPU-
based solution, TensorFHE [20], and FPGA-based designs,
FAB [7] and HEAX [39], for NTT computation. For HMUL
operations, FLASH-FHE provides a 60− 100× acceleration
compared to the FPGA and GPU implementations. These
results demonstrate the significant performance improvement
of FLASH-FHE over existing GPU/FPGA solutions for shallow
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workloads.

6.4 Power Consumption

We also conducted an evaluation of the power consump-
tion of FLASH-FHE using the 14/12nm technology node,
as we currently lack access to the power budget for cer-
tain logic modules in the 7nm technology. The total power
consumption of FLASH-FHE amounts to 152.11W, which is
superior to CraterLake (317W) and ARK (281.3W), and
comparable to BTS (163.2W). Figure 13 provides a break-
down of FLASH-FHE’s power consumption and shows the
power consumption of the bootstrappable clusters (BC), swift
clusters (SC), transpose unit (Trans), L1 cache (L1C), L2
cache (L2C) ad HBM. The results demonstrate that the boot-
strappable computation cluster accounts for the majority of
power consumption, reaching up to 60.0%, while the swift
clusters consume only 11.0% of the total power. Therefore,
our results further indicate that the improved performance re-
sulting from adding more swift clusters does not significantly
increase power consumption.

7 Discussion

Integration with Other FHE Accelerators: As discussed,
it has become evident that several FHE accelerators employ
dedicated optimization methods to achieve further perfor-
mance gain [28,29]. One such example is SHARP [28], which
utilizes a short word length to minimize chip area, albeit
with a slight accuracy trade-off. In our paper, we propose
FLASH-FHE as an alternative approach to achieve high perfor-
mance, employing a heterogeneous architecture tailored for
mixed FHE workloads. Since FLASH-FHE’s idea is orthogonal
to SHARP and ARK, we believe that integrating FLASH-FHE
with these existing FHE accelerators can yield superior per-
formance outcomes.
Combining Multiple Swift Clusters for Deep Workloads:
In the current design of FLASH-FHE, we have focused on de-
composing a bootstrappable computation cluster to support
multiple shallow FHE workloads. However, we acknowledge
that our system does not currently provide support for com-
bining multiple swift computation clusters to accelerate a

single deep FHE workload. This limitation stems from the
challenges associated with complex computation scheduling
among multiple (i)NTT pipelines. Such scheduling inherently
involves massive data movement, which can potentially de-
grade performance. Addressing this issue has been left as a
future research direction for FLASH-FHE.

8 Related Works

Besides the related works discussed in §2.3, we further cover
the following two more directions in this section.
Other Optimizations for FHE: In addition to leveraging
accelerators for enhanced performance in fully homomor-
phic encryption (FHE), there is an alternative approach fo-
cused on algorithm-level optimization. While the accelerators
discussed in §2.3 primarily target second-generation FHE
schemes such as BFV [19], BGV [10], and CKKS [14], third-
generation FHE schemes based on the GSW scheme [23]
have been proposed, such as TFHE [15]. These schemes uses
exceptionally fast bootstrapping, often completing in less than
0.1 seconds. However, they come with the drawback of in-
compatibilities with batching, introducing new trade-offs that
limit their usability. Strix introduces the first FHE acceler-
ator for TFHE [37], where it designs a two-level ciphertext
batching method with programmable bootstrapping. Another
direction of exploration involves optimizing software imple-
mentations. Researchers have developed efficient software
libraries, including SEAL [5] and Lattigo [4], or compilers
such as EVA [18], to improve FHE performance.
Partial Homomorphic Encryption Acceleration: Several
existing works focus on enhancing the performance of par-
tial homomorphic encryption (PHE) schemes, especially the
Paillier scheme. Notably, FLASH employs FPGA technology
to expedite PHE operations specifically for federated learn-
ing [46]. Similarly, HAFLO utilizes GPUs to accomplish a
comparable objective [13]. Additionally, Shi et al.have devel-
oped a dedicated 28nm ASIC tailored for accelerating PHE
processes [44]. Since the basic building blocks of the Pail-
lier scheme are modular multiplications and exponentiations,
the design choices of these PHE accelerators are very differ-
ent from FHE accelerators, which are built on polynomials
computations.

9 Conclusion

This paper proposed FLASH-FHE, the first heterogeneous ac-
celeration architecture for FHE. We have provided a full RTL
implementation of FLASH-FHE and synthesized it using two
representative technology nodes. Experiments with three shal-
low and four deep FHE workloads show that FLASH-FHE can
consistently achieve high performance for mixed FHE work-
loads.
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