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1 CROSS-SILO FEDERATED LEARNING

Cross-silo federated learning (FL) denotes the scenario
where companies or institutions collaboratively train ma-
chine learning models without data privacy leakage [1], [2],
[3], [4], [5], [6]. Compared with cross-device FL, where par-
ticipants are mobile devices, cross-silo FL focuses more on
data security and incentive mechanism. From the data par-
tition angle, Yang et al. proposed to categorize FL into hor-
izontal FL, vertical FL, and federated transfer learning [7].
Federated transfer learning has rarely been applied in the
industry and remains in the research stage. In most cases,
cross-device FL contains only horizontal FL, while cross-
silo FL usually contains both horizontal and vertical FL.
Because of the different data partition situations, horizontal
and vertical FL are different in model construction, protocol
design as well as the utilized cryptographic systems.

1.1 Cross-silo Horizontal FL
Participants in horizontal FL have different sample ID
spaces but the same feature space. Each participant owns
the labels of their samples. Therefore, horizontal FL enlarges
the number of training samples to train a model with better
generalization ability. In most cases, there is a third-party
central server for parameter aggregation.

The tth iteration of the training process among three
participants is shown as follows:

1. All participants negotiate about keys for encryption.

2. Each participant i trains local model wt
i with its own

samples and encrypts its model weights to [[wt
i ]] with

either additively homomorphic encryption (e.g., Pail-
lier [8]).

3. Each participant i sends the encrypted weights to the
central server.

4. The server receives the encrypted local model weights
from all participants and aggregates them to global model
weights

∑
i [[w

t
i ]]

n , where n stands for the number of partic-
ipants. Because the weights are encrypted via additively
homomorphic encryption, we can directly perform an
aggregation over the ciphertext.

5. The central server sends the aggregated global weights
to all participants.

6. Each participant receives the global weights and de-
crypts them locally. Then the participant can update its
local model wt+1

i with the decrypted global model.

After the federated training process, each participant
obtains the same well-trained model. Thus, each participant
can perform model inference locally.

1.2 Cross-silo Vertical FL
Participants in vertical FL scenarios have the same sam-
ple ID space but different feature spaces. Under normal
circumstances, only one participant holds the label of the
FL task, which is called the active party. The other par-
ticipants without labeling information are called passive
parties. Compared with horizontal FL, vertical FL could
enrich the feature information of samples. Unlike horizontal
FL, the training process of vertical FL is conducted after the
entity alignment stage, which aligns common samples while
protecting privacy. Besides, the training schema of vertical
FL is also different from horizontal FL. More specifically,
each participant only owns part of the model parameters
corresponding to the local feature dimensions. Hence, ver-
tical FL cannot simply conduct the secure aggregation as
horizontal FL does. In addition, various machine learning
algorithms do not have a unified design of the vertical FL
implementation.

Taking the federated linear regression [1] between two
participants as an example, we illustrate the training process
as follows:

1. Participants and the third-party central server negotiate
about keys for encryption.

2. Passive party B computes local point estimate ut
B,j and

partial loss Lt
B,j for the jth aligned sample, then encrypts

them to [[ut
B,j ]] and [[Lt

B,j ]] with Paillier [8]. Active party
A calculates local point estimate ut

A,j .

3. Passive party B sends the encrypted numbers to the
active party A.

4. Active party A receives the encrypted numbers and
computes the total loss [[Lt

j ]] and the intermediate results
[[dtj ]] used to calculate gradients.

5. Active party A sends [[Lt
j ]] to server and [[dtj ]] to passive

party B.

6. Party B and party A separately compute encrypted

gradients [[
∂Lt

j

∂wt
P
]] and [[

∂Lt
j

∂wt
A
]] and add random masks.
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7. Both parties send the encrypted and masked gradients
to the central server.

8. The third-party central server decrypts the received
ciphertext to get the plain-text masked gradients and
sends them back.

9. Party B and party A respectively remove the random
masks from gradients and update the local partial model.

All participants of vertical FL should be involved in the
inference stage since each of them only owns part of the
whole model.

1.3 Security Analysis of Cross-silo FL
The adopted FL algorithms in this paper are proved secure
under the semi-honest assumption [1], [9]. The semi-honest
assumption means that each party does not violate the fed-
erated protocols and only tries to infer the sensitive data of
other parties from the received messages. For the horizontal
FL models, the transmitted model updates are protected
by additively HE for aggregation. Therefore, nothing can
be learned by the arbiter. Moreover, each party obtains
the aggregated model updates and can only calculate the
average model updates of the other parties. Hence, given
more than two parties, the model updates computed over
the local data of one party cannot be leaked to the other
parties [1]. For the vertical federated linear models, the
transmitted intermediate results are protected by random
masks and HE, which reveals no information. Furthermore,
from the obtained model updates, one party cannot infer the
sensitive data of other parties without prior knowledge of
their data structures [1]. For the vertical SecureBoost model,
the active party with labels could learn some information
agreed in advance, such as the instance spaces and the
responsible parties of splits. However, under the protection
of HE, the original data records of one party cannot be
revealed to other parties, either [9].

2 PAILLIER CRYPTOSYSTEM

Paillier Cryptosystem [10] is a widely-used additively (i.e.,
partially) homomorphic encryption scheme. Paillier cryp-
tosystem supports two kinds of operations, including the
addition of two values of ciphertext and multiplication
between ciphertext and cleartext. We will introduce Paillier
key generation, encryption and decryption respectively in
the following section.
Key Generation: Key generation of Paillier Cryptosystem
follows the following steps.

1. Choose two random prime numbers p and q which
satisfy that gcd(pq, (p− 1)(q− 1)) = 1, where gcd stands
for the greatest common divisor.

2. Compute n = p · q.

3. Compute λ = lcm(p − 1, q − 1), where lcm means the
least common multiple.

4. Randomly select an integer g which satisfies that
gcd(Ln(g

λ mod n2), n) = 1. Function Ln(x) is defined
as Ln(x) = (x− 1)/n.

5. Compute µ = [Ln(g
λ mod n2)]−1 mod n.

After the above computation, we will obtain the public key:
(n, g) and private key: (λ, µ) respectively.

Encryption: The encryption algorithm of Paillier is straight-
forward and follows the following equation.

c = gm · rn mod n2. (2.1)

Optimization of Encryption: The encryption can be accel-
erated by assigning public key g as n + 1. Therefore, the
encryption algorithm is simplified as follows.

c = gm · rn mod n2

= (n+ 1)m · rn mod n2

= [(
m∑
i=0

(
m

i

)
· ni) · rn] mod n2

= [(1 +m · n) · rn] mod n2

(2.2)

One modular exponentiation operation is saved by this
optimization. FLASH uses the optimized encryption for
better performance.
Decryption: Paillier ciphertext c is decrypted to plaintext
m with both public key (n, g) and private key (λ, µ):

m = Ln(c
λ mod n2) · µ mod n (2.3)

Optimization of Decryption: The workload of the decryp-
tion algorithm of Paillier can be reduced with the Chinese
Remainder Theorem (CRT). In this scheme, prime numbers
p and q generated with the key pair are considered as the
private key. The process of optimized decryption is shown
below:

1. Compute hp = Lp(g
p−1 mod p2)−1 mod p and hq =

Lq(g
q−1 mod q2)−1 mod q.

2. Compute mp = Lp(c
p−1 mod p2) · hp mod p and

mq = Lq(c
q−1 mod q2) · hq mod q. Function Lp(x) and

Lq(x) are defined by Lp(x) = (x − 1)/p and Lq(x) =
(x − 1)/q. It can be proved that mp = m mod p and
mq = m mod q, where m is the plaintext corresponding
to ciphertext c.

3. Apply CRT to recombine the modular residues. m =
CRT(mp,mq) mod pq.
With the optimization above, the workload can be re-

duced to only about one-quarter of the original decryption
algorithm, leading to better performance. FLASH also uses
optimized decryption in its implementation.

3 RSA INTERSECTION

RSA (Rivest–Shamir–Adleman) is an asymmetric public-
private key method used to securely transfer data [11]. The
whole RSA algorithm mainly contains three operations: key
generation, encryption, and decryption.
Key Generation: The generation process is shown below:

1. Randomly choose two distinct prime numbers p and q.
2. Compute n = p · q.
3. Compute λ(n) = lcm(p− 1, q − 1).
4. Randomly choose a number e such that 1 < e < λ(n)
and gcd(e, λ(n)) = 1.

5. Compute d by solving d · e = 1 mod λ(n).
Generally speaking, (n, e) is regarded as a public key, while
d is regarded as a private key.
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Encryption: Using public key (n, e), plain-text message m
is encrypted to cipher-text message c:

c = me mod n. (3.4)

Decryption: Using private key d, cipher-text message c is
decrypted to plain-text message m:

m = cd mod n. (3.5)

RSA-based PSI: The RSA-based private set intersection can
protect the privacy of sample ID out of the intersection set
with the mechanism of blind RSA signature [12], [13]. We
take the two-party setting as an example. Party A contains
three user IDs, i.e., XA = {x1, x2, x3}, while party B con-
tains four user IDs, i.e., XB = {x1, x2, x4, x5}. They want to
find their common users via RSA-based intersection:

1. Party A generates RSA keys n, e, d and sends public key
(n, e) to party B.

2. Party B blinds and encrypts its user IDs XB to YB =
{H(x) mod n · re mod n) | x ∈ XB}, where r is a
unique random number for each x, and sends YB to party
A.

3. Party A signs the received YB , obtains ZB = {yd
mod n = r · H(x)d mod n | y ∈ YB} and sends ZB

to party B.
4. Party A also signs its own user IDs, gets DA =
{H(H(x))d | x ∈ XA} and sends DA to party B.

5. Party B unblinds the received ZB and obtains DB =
{H(z/r mod n) = H(H(x))d | z ∈ ZB}.

6. Party B computes DA ∩ DB =
{H(H(x1))

d, H(H(x2))
d} and gets common user

IDs {x1, x2}.
H(·) denotes the hash function. After party B knows the

overlapping users, it could choose whether to inform party
A according to different scenarios.

4 MODULAR EXPONENTIATION & MULTIPLICA-
TION ALGORITHM OPTIMIZATION

4.1 Binary Exponentiation
Modular exponentiation is defined as P = me mod N . In
the naı̈ve algorithm, m is multiplied by itself for e times,
and the algorithm uses e − 1 multiplications to obtain the
result. Therefore, if e is a large integer, the computation
time is dramatic. As a result, to optimize the computation,
people usually apply binary exponentiation optimization
to reduce the dramatic computation time. Algorithm 4.1
shows the process of the binary exponentiation optimization
algorithm.

The idea of binary exponentiation is to reduce the num-
ber of multiplications by using the binary representation
of the exponent e. As a result, we only need to compute
at most 2⌊log2 e⌋ multiplications, which is much smaller
than e − 1. Since the time complexity of modular expo-
nentiation is determined by the number of multiplications,
binary exponentiation can reduce its time complexity from
O(e) to O(log e). Worth mentioning, the modulo computa-
tion can be performed after each multiplication because of
the distribution law in modular arithmetic: (a mod N)(b
mod N) ≡ ab mod N .

Algorithm 4.1 Binary Exponentiation

Input: m, e, N , where N > 0
Output: P = me mod N

1: P = 1 ▷ Initialization
2: while e > 1 do
3: if e is odd then
4: P = P ·m mod N
5: end if
6: e = e ≫ 1
7: m = m2 mod N
8: end while
9: return P

Summary: By using the binary exponentiation optimization
algorithm, we can largely optimize the time complexity of
modular exponentiation computation.

Algorithm 4.2 Montgomery Modular Multiplication
▷ Given three input numbers X , Y and N , the Mont-
gomery Modular Multiplication outputs Z = X · Y ·
R−1 mod N , where R is a power of 2 and ⌊log2 R⌋ =
⌊log2 N⌋.
Input: X = (Xd−1, ..., X0), Y = (Yd−1, ..., Y0), N =

(Nd−1, ..., N0), N ′, where
N ′ = (−N)−1 mod r, ▷ N ′ is pre-computed in S1
r = 2w, d = ⌊logr N⌋+ 1, ▷ r and d is used to split data
gcd(N, r) = 1, with N ×N ′ ≡ −1 mod r

Output: Z = ModMult(X,Y,N) = X × Y ×R−1 mod N
1: Z = (Zd−1, ..., Z0) = 0 ▷ Initialization
2: for all i = 0, 1, ..., d− 1 do ▷ Loop on Y
3: q = (Z0 +X0 × Yi)×N ′ mod r
4: C = 0
5: for all j = 0, 2, ..., d− 1 do ▷ Loop on X
6: S = Zj +Xj × Yi + q ×Nj + C
7: if j > 0 then
8: Zj−1 = S mod r
9: end if

10: C = S ≫ w ▷ Carry higher bits
11: end for
12: Zd−1 = C
13: end for
14: if Z ≥ N then
15: Z = Z −N
16: end if
17: return Z

4.2 Montgomery Modular Multiplication
After applying the binary exponentiation optimization al-
gorithm as shown in §4.1, we lower the time complexity of
modular exponentiation computation by reducing the num-
ber of multiplications. However, after each multiplication,
we have to perform one modulo operation. Although we
can implement modulo operation on hardware with Cyclic
Reduction and Barrett Reduction algorithms [14], the perfor-
mance of these algorithms is still not satisfying because of
the division operations used in these algorithms. Therefore,
FLASH utilizes Montgomery Modular Multiplication [15] to
replace the modulo operation with a bit-shifting operation,
which is more hardware-friendly.

The process of applying Montgomery Modular Mul-
tiplication includes three major steps: (1) converting the
data into Montgomery space, (2) computing the modular
multiplication in the Montgomery space, and (3) converting
the data back from Montgomery space. Before going into
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details, we will first describe Algorithm 4.2. This algorithm
implements efficient A ∗ B ∗ R−1 mod N in a hardware-
friendly way. The key optimization of the algorithm is the
introduction of the divider R = rd. Thus the division can
be easily implemented by bit-shifting since r is a power-of-2
integer, and after the division, the result is an integer within
[0, 2N) and no more modulo operation is needed. After-
ward, we will show details of each step in the following
sections.
Converting the data into Montgomery space: Before
applying Montgomery Modular Multiplication, the input
numbers should be converted to Montgomery space. The
conversion formula is A = a · R mod N . It can also be
written as A = a · R2 · R−1 mod N , so we can leverage
Algorithm 4.2 to efficiently calculate it. In the formula, a is
one of the multiplicands of modular multiplication. A is the
Montgomery space of a. N is the modulus. R is a power of
2 and it satisfies the condition that ⌊log2R⌋ = ⌊log2N⌋.
Computing the modular multiplication in the Mont-
gomery space: We can directly use Algorithm 4.2 to effi-
ciently calculate the modular multiplication.
Converting the data back from Montgomery space: To
convert a number out of Montgomery space, the conversion
formula is p = P · R−1 mod N . p is the result of modular
multiplication. P is the Montgomery format of p. Similarly,
we can leverage Algorithm 4.2 to complete the computation.
Parameter Computation: In the above steps, we notice that
if N , which is usually the public key in cryptosystems,
remains unchanged, R2 mod N (e.g., used in converting
the data into Montgomery space) and (−N)−1 mod r (e.g.,
line 3 and 8 in Algorithm 4.2) remain constant values. We
call these constant values parameters in this paper, and we
show that we can compute these parameters in advance and
avoid duplicate calculations to improve the performance
further.
Summary: By applying the Montgomery Modular Mul-
tiplication, we mainly replace the modulo operation with
a hardware-friendly bit-shifting operation, which improves
the performance of modular multiplication/exponentiation
on hardware.
4.3 Algorithm Optimization
Algorithm 1 in the main text shows the optimized version of
the Montgomery Modular Multiplication algorithm. In this
section, we mainly discuss the equivalence of Algorithm 1
in the main text and Algorithm 4.2 in the previous section.

Please first note that, we set r = 2w and w is the bit-
width of Yi and Xj . Therefore, the “ mod r” modulus
operation is equivalent to truncating the lower w bits of a
2w-bit number while the “>> w” shifting operation equates
to truncating the higher w bits of a 2w-bit number.

The third line in Algorithm 4.2 is consequently separated
into the operations from lines 3 to 5 in Algorithm 1. And it
is easy to observe that the value X0 × Yi in the calculation
of q is also required in the first iteration of the inner loop.
Therefore, we cache the number as α and reuse it in line 6 in
Algorithm 1. Therefore, from line 6 to line 9 in Algorithm 1,
we equivalently execute the first iteration of the inner loop
in Algorithm 4.2.

For the inner iteration, we also find out that, for the value
C in line 6 of Algorithm 4.2, its lower w bits are saved

as Zj−1, which is the multiplication result for the current
iteration, while its higher w bits are saved as C , which is the
value carried for the next iteration. Therefore, we separate
the calculation of C into higher w and lower w bits from line
11 to line 15 in Algorithm 4.2.

5 DISCUSSION

Benefit to Future GPU/TPU Design: Nowadays, GPU [16],
[17], [18], [19], [20] and TPU [21] have been widely adopted
to accelerate deep learning applications. These accelera-
tors mainly target accelerating convolution operations with
tensors, where most numbers are short floats. In con-
trast, FLASH targets accelerating the identified nine crypto-
graphic operations that are widely adopted in cross-silo FL.
Moreover, most numbers used in FLASH are large numbers
with a bit-width of 2048 bit or even longer. However, in
some cross-silo applications, e.g., horizontal deep learning,
both convolution and cryptographic operations exist. There-
fore, we can foresee a co-design of GPU/TPU with FLASH
in the future. We will make FLASH as an IP core in the
future, and thus GPU/TPU vendors can use FLASH in their
design to accomplish the aforementioned co-design.

FLASH v.s. Other GPU/FPGA Implementations: Some
existing works also target accelerating modular exponentia-
tion operations with GPU [22], [23], [24] or FPGA [25], [26],
[27], [28], [29], [30], [31], which leverage similar algorithm
optimization methods, e.g., Binary Exponentiation [32] and
Montgomery Modular Multiplication [15]. Yet, none of them
performs a thorough analysis towards all cryptographic
operations used in cross-silo FL and offloads them efficiently
on the hardware-based accelerator as FLASH. Moreover,
our idea of composing various cryptographic operations
based on the two basic operators via dataflow scheduling
is designed for the cross-silo FL scenarios, making FLASH a
unique solution compared to prior FPGA-based implemen-
tations. As a final note, our design of FLASH is not limited
to FPGA but is also applied to ASICs.

Extending to Other Application Domains: While FLASH
is introduced for accelerating cross-silo FL, it can speed up
applications in other domains as well. First, the Paillier and
RSA cryptosystems used in cross-silo FL are also widely
adopted in other domains. Thus FLASH can accelerate
applications built on them, e.g., electronic voting [33], elec-
tronic cash [34], and threshold cryptosystem [35]. Second,
since FLASH’s core idea is to accelerate modular multi-
plication and exponentiation operators, cryptographic sys-
tems/operations built on them, such as Diffie-Hellman key
exchange [36], can also benefit from FLASH.
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