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High-Performance Hardware Acceleration
Architecture for Cross-Silo Federated Learning

Junxue Zhang , Xiaodian Cheng , Liu Yang , Jinbin Hu , Han Tian , and Kai Chen

Abstract—Cross-silo federated learning (FL) adopts various
cryptographic operations to preserve data privacy, which intro-
duces significant performance overhead. In this paper, we identify
nine widely-used cryptographic operations and design an efficient
hardware architecture to accelerate them. However, directly of-
floading them on hardware statically leads to (1) inadequate hard-
ware acceleration due to the limited resources allocated to each
operation; (2) insufficient resource utilization, since different oper-
ations are used at different times. To address these challenges, we
propose FLASH, a high-performance hardware acceleration archi-
tecture for cross-silo FL systems. At its heart, FLASH extracts two
basic operators—modular exponentiation and multiplication—
behind the nine cryptographic operations and implements them as
highly-performant engines to achieve adequate acceleration. Fur-
thermore, it leverages a dataflow scheduling scheme to dynamically
compose different cryptographic operations based on these basic
engines to obtain sufficient resource utilization. We have imple-
mented a fully-functional FLASH prototype with Xilinx VU13P
FPGA and integrated it with FATE, the most widely-adopted
cross-silo FL framework. Experimental results show that, for the
nine cryptographic operations, FLASH achieves up to 14.0× and
3.4× acceleration over CPU and GPU, translating to up to 6.8×
and 2.0× speedup for realistic FL applications, respectively. We
finally evaluate the FLASH design as an ASIC, and it achieves
23.6× performance improvement upon the FPGA prototype.

Index Terms—FPGA, federated learning, hardware accelerator.

I. INTRODUCTION

TRAINING a high-quality machine learning model requires
massive data, which is likely to be distributed across dif-

ferent institutions or companies in the real world. However, the
increasing concern about data privacy and emerging regulations
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and lawsuits restrict these data from being collected together in
one place for centralized training. To solve this problem, feder-
ated learning (FL) has been proposed to enable distributed learn-
ing among these data silos by performing local computation
within a data silo and securely aggregating the intermediate re-
sults (e.g, gradients/parameters) to generate a global model with-
out revealing any original data to the outside world [1], [2], [3].

To ensure the security of cross-silo FL, various cryptographic
techniques have been used. For example, partially homomor-
phic encryptions (PHE), e.g, Paillier, have been used to enable
parameter computation/aggregation directly on ciphertexts [4].
RSA is used to build the blind signature-based Private Set
Intersections (PSI) for sample alignment [5]. In this paper,
we perform a comprehensive analysis of existing cross-silo
FL applications and identify nine widely-used cryptographic
operations, such as encryption/decryption, computation over ci-
phertexts, etc. (more details in Section III-A). While preserving
privacy, these cryptographic operations significantly degrade
the performance (Section III-B). For example, our experiments
show that these operations cause up to 60.74× performance
degradation. The reasons are two-fold: (1) they are of high com-
putational complexity, e.g., Paillier encryption has a O(2N )1

time complexity; (2) they introduce large number calculations,
e.g., additively HE and RSA encryption generate 2048-bit ci-
phertexts which need to be broken down to multiple 64-bit
numbers and executed with limited parallelism on current CPU
architecture.

In this paper, we ask: can we offload these cryptographic
operations to dedicated hardware to accelerate cross-silo FL?
Towards answering this question, our first attempt went with
GPU. We have designed HAFLO [6], a GPU-based joint opti-
mization of storage, IO, and computation for federated logistic
regression. While there is still some room to optimize GPU-
based solutions, in this paper, to achieve superb performance
and low power consumption, we choose to use FPGA as a
prototype and further explore an Application-specific Integrated
Circuit (ASIC) to improve the acceleration of cross-silo FL.
We believe such customized hardware architecture will exhibit
several desired properties for our purpose. First, it is possible
to tailor a hardware architecture for efficient cross-silo FL by
customizing the hardware circuits from scratch, so that we
can design an optimized fine-grained pipelining with flexible
v bit-width support for accelerating cryptographic operations.

1N is the bit-width of the exponent n, and n is the public key in Paillier
encryption.
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Second, the customized hardware architecture allows us to pro-
vide sufficient on-chip memory for storing large numbers used
in the processing pipeline for superior performance. However,
while promising, we identify that directly offloading the nine
cryptographic operations to the hardware statically will pose
two key challenges (Section III-C):
� Inadequate hardware acceleration due to limited re-

sources: To achieve high performance, one operation may
need multiple hardware instances for high parallelism.
However, as the hardware resource of a chip is limited,
directly offloading all these nine operations to the hardware
causes inadequate resources to speed up each operation,
leading to suboptimal performance. Our implementation
with this approach on a Xilinx VU13P FPGA [7] chip
shows that each operation only achieves 50% acceleration
on average.

� Insufficient resource utilization due to static offloading:
Different FL applications use different cryptographic oper-
ations, and within each application, different operations are
used at different times. Consequently, statically offloading
all the operations as a whole results in resource under-
utilization because not all the operations are used at all
times simultaneously.

To address the challenges, we take a closer look at these
nine cryptographic operations and observe that almost all of
them build upon two basic operators: modular exponentia-
tion and modular multiplication. Based on this observation,
we propose FLASH, a high-performance hardware accelera-
tion architecture for cross-silo federated learning (Section IV).
At its core, FLASH uses the majority of hardware resources
to implement the two basic operators as high-performance
engines to achieve adequate hardware acceleration. We also
design fine-grained pipelines with sufficient on-chip mem-
ory to improve both the intra- and inter-engine execution
efficiency for superior performance. Furthermore, based on
these basic engines, FLASH adopts a dataflow scheduling
module to dynamically compose these engines into different
cryptographic operations on-demand to achieve high resource
utilization.

We have provided a down-scale but full functional implemen-
tation of FLASH with Xilinx VU13P FPGA2 [7] for prototyping
purpose, integrated it with FATE [8]—the most widely-adopted
cross-silo FL framework—and evaluated it extensively with
real-world FL applications. We compare the performance of
FLASH with (1) the vanilla FATE, which uses GMP [9] to imple-
ment these cryptographic operations with CPU. GMP provides
a highly-optimized implementation for modular multiplication
and exponentiation operations, which uses many optimization
algorithms, including but not limited to the two mentioned in our
paper. We choose Intel Xeon Silver 4114 CPU similar to prior
works [10]; (2) the FATE where the cryptographic operations
are accelerated by NVIDIA P4 GPU3 [6], [13]. Here we use P4

2We use FPGA for prototyping purposes, so we do not consider the price
advantages/disadvantages of the VU13P FPGA chip.

3We note that latest NVIDIA A100 [11]/H100 [12] may have a better perfor-
mance than P4/VU13P. However, they utilize a much more advanced technology

GPU because it has the closest INT8 TOPS (although 2× better)
as FLASH (we typically use INT8 TOPS to denote the general
computation power of a chip). P4 has approximately 20 INT8
TOPS [13]. VU13P has 38.3 INT8 DSP TOPS while reaching
peak 891 MHz operation frequency [7], [14]. As FLASH uses
300 MHz, it achieves 12.9 DSP INT8 TOPS. Moreover, both of
them are built with 16 nm technology. Finally, with the standard
Synopsys software tools (e.g., Design Compiler [15], VCS [16]
and Prime Time [17]), we further evaluate the performance of
FLASH if implemented as an ASIC.

Moreover, to evaluate how FLASH performs on the public
cloud, we also migrate FLASH’s design to Alibaba Cloud f3
instance [18], which has two VU9P FPGA chips (Section VI).

Overall, some of our key results are as follows:
� Across the nine concrete cryptographic operations (Section

VII-B), FLASH (with FPGA implementation) outperforms
CPU and GPU by 10.4×–14.0× and 1.4×–3.4×, respec-
tively.

� Over the nine realistic FL applications (Section VII-C),
FLASH (with FPGA implementation) can consistently
outperform CPU and GPU by up to 6.8× and 2.0×, re-
spectively.

� FLASH on the public cloud (Section VII-B) can achieve
comparable performance as its FPGA prototype with less
than 5% performance loss.

� Our evaluation of FLASH as an ASIC with 12 nm and
28 nm fabrication techniques (Section VII-E) shows that it
can achieve 23.6× and 7.1× additional performance im-
provement upon the FPGA implementation, respectively.

As a final note, we are fully aware that there exist various other
privacy-preserving techniques [19], [20], [21], [22]. However, in
current industry-level deployments, Paillier and RSA schemes
built with the nine cryptographic operations we investigated
in this work are, to date, the most widely adopted approach
in cross-silo FL systems [8], [23], [24], primarily due to the
reason that they can achieve relatively better performance and
are easier to use compared to other privacy-preserving schemes.
Our goal is to provide plug-and-play acceleration capability for
these industry-level cross-silo FL systems.

This journal version is an extension to our previous work
on FLASH [25] and offers additional technical details regard-
ing its architecture and implementation. We emphasize several
key enhancements: (1) We have conducted comparisons among
various privacy-preserving technologies to elucidate why PHE
stands out as the most commonly utilized privacy-preserving
technology in cross-silo FL (Section II-A). (2) A comprehensive
overview of FLASH’s FPGA implementation has been provided,
focusing on the physical arrangement of FLASH modules (Sec-
tion V). (3) New content has been added to assess FLASH’s
compatibility with leading cloud providers, with the migration
of FLASH’s design to Alibaba Cloud highlighted (Section VI).
(4) More in-depth experiments on FLASH have been included
(Section VII-D).

node. Readers can consult the results in Section VII-E to see how FLASH
performs if also implemented as an ASIC with advanced technology node, such
as 12 nm.
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Fig. 1. Two paradigms of cross-silo FL.

Fig. 2. VLR of 4 different privacy-preserving technologies under varying
networking bandwidth (both PHE and FHE are in non-batched mode).

II. CROSS-SILO FEDERATED LEARNING

FL was first proposed by Google to train a language model
for keyboard input prediction from massive Android devices
without leaking privacy-sensitive data [26], [27]. Recently, FL
has evolved from the above cross-device scenarios to collab-
oratively train machine learning models across different data
silos, i.e., cross-silo FL [1], [2], [3]. A data silo is a repository
or collection of data under the control of a single entity (e.g.,
institution, company, etc.), and is isolated from other entities
due to the ever-improving management regulations or laws [28].
Cross-silo FL enables machine learning among these data silos
and supports both vertical and horizontal FL.

Horizontal FL: As shown in Fig. 1(a), participants in Hor-
izontal FL have different sample spaces but the same feature
space, and each participant owns the labels of its samples. In
most cases, there is an arbiter for parameter aggregation (the
arbiter is a third-party server to assist the FL computations).
To train a model, each participant trains local model w with its
own samples and encrypts its model weights via PHE (e.g., Pail-
lier [29]). Then all participants send their encrypted weights to
the arbiter, and the arbiter directly performs an aggregation over
the received ciphertexts to obtain the global model. Eventually,
the arbiter sends the aggregated global model to all participants
for next-round computation.

Vertical FL: As shown in Fig. 1(b), participants in Vertical FL
have the same sample space but different feature spaces. Only
one participant holds the label of the FL task. Before training a
model, all participants have to align the samples among different
data silos based on the common IDs (similar to joining two
tables in a database based on the common IDs). One of the
most commonly used algorithms is RSA blind signature-based
PSI (RSA-PSI) [5]. After sample alignment, all participants
can follow a pre-defined protocol for model training, such as
Vertical Linear Regression (Please see Table 1 in [1]) and

TABLE I
THE RATIO OF NETWORKING COMMUNICATION TIME TO THE TOTAL

COMPUTATION TIME

SecureBoost [30]. During the process, participants use PHE to
encrypt their intermediate results and exchange them with other
participants or the arbiter.

For interested readers, we have provided a detailed expla-
nation on how cross-silo FL works and its security analysis in
Appendix 1 of the supplementary materials.

A. Privacy-Preserving Technologies in Cross-Silo Federated
Learning

Various privacy-preserving technologies can be used in cross-
silo FL/machine learning, e.g., PHE [1], [30], secret sharing
(SS) [20], fully homomorphic encryption (FHE) [21]4 or com-
bination of PHE and SS [23]. In this section, we explain why
PHE, or PHE-related privacy-preserving technology is still the
widely-adopted one in real-world applications.

Please note, differential privacy (DP) [19], which is widely
adopted in cross-device FL [26], is rarely used in cross-silo FL.
The reason is that DP preserves privacy by adding noises to
the data, thus it causes inevitable accuracy loss. Such accuracy
loss is not acceptable in most cross-silo FL applications, e.g.,
financial risk controls.

Moreover, cross-silo FL in real-world scenarios usually suf-
fers from limited networking bandwidth, e.g., 10 Mbps to
100 Mbps. Not all of the aforementioned privacy-preserving
technologies deliver ideal performance under such an environ-
ment. To help readers to better understand it, we will use testbed
experiments to illustrate their end-to-end performance. We em-
ploy 2 participants cooperatively train a linear regression model.
During the training, we use netem [31] to vary the available
bandwidth. The experiment results are shown in Fig. 2. From
the results, we observe that SS and FHE suffer from dramatic
performance degradation when the networking bandwidth is
limited, especially within 10 Mbps and 100 Mbps. In contrast,
the performance of PHE and PHE+SS is less affected by the
varying bandwidth.

To investigate the root cause of the above experiments, we
conducted further analysis on three privacy-preserving technolo-
gies. In particular, we focused on comparing three technolo-
gies, excluding SS, which is already known to be networking-
intensive. The results of this analysis are presented in Table I.
Based on the findings, the networking communication time for
the technologies related to PHE is relatively small, accounting
for less than 5% of the total computation time in all test cases.
In contrast, the networking communication time for the FHE-
driven linear regression model is significantly higher, reaching

4Only the model parameters, not the original data, are encrypted with FHE in
FL/machine learning.
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85.1% and 36.7% in scenarios with 10 Mbps and 100 Mbps
networking bandwidth, respectively. These bandwidth settings
represent typical scenarios in real-world cross-silo FL applica-
tions. Consequently, the high sensitivity of FHE to networking
bandwidth renders its impractical for real-world cross-silo FL
applications.

Therefore, among these privacy-preserving technologies,
PHE and traditional (mainly used in RSA-PSI) cryptographic
technics are widely used in cross-silo FL and deployed in
real-world scenarios due to their practicality, which is the target
of this paper. These cryptographic technics are composed of
various operations, e.g., data encryption/decryption via PHE,
computation over ciphertext, etc., and we call these operations
as cryptographic operations in this paper.

III. ANALYSIS OF CRYPTOGRAPHIC OPERATIONS

A. Cryptographic Operations

In this section, we present nine cryptographic operations that
are widely used in cross-silo FL. Our study is based on the im-
plementation of FATE [8], the most widely adopted open-source
framework for cross-silo FL. However, our analysis can also be
applied to other cross-silo FL frameworks, e.g., FedLearner [33],
TF Encrypted [34], etc. Specifically, these nine cryptographic
operations are as follows:

O1. Paillier Encryption: This operation uses Paillier [4], [35],
an additively homomorphic cryptographic algorithm, to encrypt
cleartexts into ciphertexts. The operation is mainly used for
protecting the intermediate data during model training.

O2. Paillier Decryption: This operation decrypts Paillier ci-
phertexts into cleartexts. It is used when participants need to
decrypt the intermediate results for local model updates in the
training phase.

O3. Ciphertext Matrix Addition: This operation is used to
add two matrices (or vectors/values) of ciphertexts. As Paillier
is used, ciphertexts can be summed up.

O4. Ciphertext & Cleartext Matrix Element-wise Multiplica-
tion: This operation performs Hadamard product [36] between
two matrics of ciphertexts and cleartexts.

O5. Ciphertext & Cleartext Matrix Multiplication:5 This op-
eration performs matrix multiplication between two matrices of
ciphertexts and cleartexts, respectively.

O6. Ciphertext Histogram Building: This operation performs
addition operations over encrypted gradient statistics to build
decision trees [30].

O7. RSA Encryption/Decryption: This operation conducts en-
cryption or decryption with the public or private key of the RSA
algorithm correspondingly. This operation is used when multiple
participants try to perform PSI for sample alignment [5].

O8. RSA Blind: This operation blinds the cleartexts with
encrypted random numbers.

O9. RSA Unblind: This operation unblinds RSA ciphertexts
to remove the random numbers from the ciphertexts.

5To efficiently process a large matrix, we will use optimization algorithms
such as blocking the matrix and performing multiplications of the blocked
matrices. Thus this operation is not a simple combination of matrix element-wise
multiplication (O4) and addition (O3).

Fig. 3. Cryptographic operation computation time analysis.

As shown subsequently (Section III-B), these cryptographic
operations have a large impact on the performance of cross-silo
FL applications due to the following two reasons:
� High time complexity: These operations are of high com-

putation complexity, e.g., Paillier encryption has a time
complexity ofO(2N ). Thus these algorithms are expensive
to compute.

� Large number computation: Cryptographic operations sig-
nificantly inflate data, yielding large numbers, e.g., 2048-
bit integer. The large number will need to be divided into
multiple small numbers and executed on the current CPU
architecture with limited parallelism.

B. Quantifying the Performance Impact

We now quantify the performance impact of these cryp-
tographic operations with realistic cross-silo FL applications
through testbed experiments.

Testbed Setup: We use two X86 servers in our setup. Each
server is equipped with a Mellanox CX-4 NIC [37] and con-
nected to a Mellanox SN2100 [38] switch via 40 Gbps DAC
cables. To reflect realistic networking situations in real-world
cross-silo FL deployments, we use netem [31] to limit the
networking bandwidth to 50 Mbps. As to other hardware con-
figurations, each server is equipped with one Intel Xeon Silver
4114 CPU [39], 192 GB memory. We deploy FATE v1.5 as the
cross-silo FL framework.

We choose three most widely-adopted vertical FL applica-
tions and one horizontal FL application for evaluation: RSA
blind signature-based PSI (RSA-PSI), Vertical Logistic Regres-
sion (VLR) [32], SecureBoost Decision Tree (SBT) [30] and
Horizontal Logistic Regression (HLR). The dataset we use is
a commercial dataset from a bank with around 100,000 sam-
ples and 80 features. For vertical FL applications, the dataset
is vertically partitioned into two parts: one part contains 80
features while the other contains one feature. We first perform
RSA-PSI to obtain the data intersection. Then, we run VLR
and SBT over the data intersection, respectively. For horizontal
FL, the dataset is horizontally partitioned into two parts, each
with 50,000 samples. The four applications are executed both
with cryptographic operations implemented using GMP (w/ CO)
and without cryptographic operations (w/o CO). To implement
model training w/o CO, we modify the code of FATE to skip
these cryptographic operations. To perform a fine-grained anal-
ysis, we also break down these four applications into sub-tasks,
and for each sub-task, we show the adopted cryptographic oper-
ations. All the applications are executed with ten CPU cores in
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TABLE II
PERFORMANCE PENALTY CAUSED BY CRYPTOGRAPHIC OPERATIONS (CO) WITH DIFFERENT CROSS-SILO FL APPLICATIONS

parallel. Table II shows the results, and we make the following
observations:
� Cryptographic operations considerably degrade the per-

formance: In general, cryptographic operations signifi-
cantly degrade the performance of cross-silo FL appli-
cations. In our experiment, the cryptographic operations
cause RSA-PSI, VLR, SBT and HLR to suffer 2.60×,
12.05×, 3.49× and 60.74× performance degradation,
respectively. Moreover, the combinations of these cryp-
tographic operations can degrade the performance from
2.02× to 526.10×.

� Not all the cryptographic operations are used at all times
simultaneously: Different FL applications use different
cryptographic operations, and even within a single appli-
cation, different sub-tasks use different operations.

C. Challenges of Offloading Cryptographic Operations

There are several available methodologies to accelerate these
cryptographic operations. We have explored leveraging GPUs as
our first attempt. Interested readers could consult our previous
research paper, HAFLO [6], where we designed a GPU-based
joint optimization of storage, IO, and computation for federated
logistic regression. While we acknowledge that there are still
some more spaces to explore with GPU to accelerate crypto-
graphic operations, in this paper, we mainly focus on designing
an ASIC to achieve superb performance and low power con-
sumption (more discussions are in Section VII-E).

Therefore, we follow the rule-of-thumb approach to use
FPGA as a prototype and evaluate the potential of ASIC via
software tools [40], [41], [42]. However, we confront the fol-
lowing two challenges in our design:

1) Inadequate hardware acceleration due to limited re-
sources: As identified in Section III-B, all the cryptographic
operations cause a performance penalty, so we should offload
all of them to hardware. Furthermore, to realize sufficient ac-
celeration, each operation requires multiple hardware instances
of accelerating modules/circuits for high parallelism. However,
in practice, the hardware chip has limited resources, and if
we naïvely offload all cryptographic operations to the chip,

each operation has inadequate resources to be fully accelerated.
Taking the DSP resources as an example, our preliminary im-
plementation on VU13P FPGA [7] chip shows that to accelerate
Paillier encryption (O1) by 2×, we need to use 2630 DSPs. Yet, a
high-end FPGA chip, such as VU13P [7], only has 12288 DSPs,
leaving<1365DSPs for one operation on average6 (some DSPs
are reserved for PCIe, memory controller, etc.). Thus, directly
offloading all operations on VU13P FPGA chip leads to less than
50% acceleration on average. A similar problem also applies to
the ASIC design.

2) Insufficient resource utilization due to static offloading.
Different from software, hardware function is static after being
configured/programmed/taped out, thus it cannot change its
function dynamically. Nevertheless, as shown in Section III-B,
not all the cryptographic operations are used at all times simulta-
neously. Consequently, if we statically offload all cryptographic
operations on the hardware chip, only part of these cryptographic
operations is used at a time. Therefore, such static offloading
causes low resource utilization and further leads to suboptimal
performance.

D. Opportunities With Accelerating Basic Operators

To overcome the above challenges, we further take a look at
the internal of these nine cryptographic operations. We discover
that all these operations are composed of two basic operators:
modular multiplication and exponentiation. Then we further find
that the performance of these operations is mainly decided by
the two basic operators.

Paillier Encryption: Given the public key (n, g) and data
m (0 ≤ m < n), the Paillier encryption algorithm takes two
steps: (1) selecting a random number r where 0 < r < n and
r ∈ Z∗

n; (2) computing ciphertext c = gm · rn mod n2. The
formula can also be simplified to c = (1 +mn) · rn mod n2

by setting g = (1 + n). We use [[·]] to denote the Paillier en-
cryption, e.g., c = [[m]].

Homomorphic Addition: Given two plaintext a and b, ho-
momorphic addition guarantees that [[a]]

⊕
[[b]] = [[a+ b]].

6We will show later that all these nine operations share similar building blocks,
thus they require similar resources to implement.
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In Paillier cryptosystem, [[a]]
⊕

[[b]] is defined as [[a]] ∗ [[b]]
mod n2. The homomorphic addition is used by operations O3,
O5 and O6.

Homomorphic Multiplication: Given a plaintext a and k, the
homomorphic multiplication is denoted by k · [[a]]. It can be
actually regarded as a homomorphic addition: Σk[[a]]. Thus,
k · [[a]] = [[a]]k mod n2. The homomorphic multiplication is
used by operations O4 and O5.

Paillier Decryption: Given the public key (n, g), private key
(p, q) and ciphertext c, the Paillier Decryption algorithm can
be optimized via Chinese Remainder Theorem (CRT) to reduce
the original workload to only about one-quarter of the original
decryption algorithm. To use CRT, we define Lp and Lq to
be Lp(x) =

x−1
p and Lq(x) =

x−1
q . The decryption algorithm

takes the following three steps: (1) computing mp = Lp(c
p−1

mod p2)Lp(g
p−1 mod p2)−1 mod p; (2) computing mq =

Lq(c
q−1 mod q2)Lq(g

q−1 mod q2)−1 mod q; and (3) com-
puting plaintext m = CRT(mp,mq) mod n.

RSA-related Operations: The RSA-related operations are
used in RSA blind signature-based PSI [5]. It is commonly
known that the core of these RSA-related algorithms is either
modular multiplication or modular exponentiation.

Through the above mathematical analysis, we find that all
cryptographic operations used in cross-silo FL are built upon the
two basic operators: modular multiplication and exponentiation.
Then, we further perform testbed experiments to investigate
how these two basic operators impact the performance of the
nine original cryptographic operations. The results are shown in
Fig. 3. Clearly, we find that across all nine original operations,
the two basic operators occupy >95% of the total execution
time.

Observation: We can compose all the nine cryptographic
operations with these two basic operators, and by accelerating
these two basic operators, all the nine original operations used
in cross-silo FL applications can be effectively accelerated.

IV. THE FLASH DESIGN

Inspired by the above observation, we present FLASH, a high-
performance hardware acceleration architecture for cross-silo
FL. This section describes how we design FLASH in detail.
Please note that our design has been fully implemented in our
FLASH prototype with FPGAs as well as rigorously evaluated
with the Synopsys tools for the ASIC.

A. Architecture Overview

Fig. 4 shows the overall architecture of FLASH. It contains a
hardware acceleration card and an integrated software package.
The accelerator card can be plugged into a server via PCIe
Gen3×16 interface. The server is installed with cross-silo FL
software, e.g., FATE. The software can invoke FLASH’s soft-
ware package to offload the cryptographic operations on the card
for efficient acceleration.

The idea of our FLASH design is that it does not directly
offload all cryptographic operations on the hardware, but lever-
ages the insights of our observation to (1) utilize the limited

Fig. 4. FLASH architecture.

programmable resource for most performance-critical basic op-
erators: modular exponentiation and multiplication to achieve
adequate acceleration (Section IV-B), and (2) design an on-chip
dataflow scheduling module to dynamically compose different
cryptographic operations on-demand based on these engines,
achieving high resource utilization (Section IV-C). In addition,
to make FLASH a general solution to support a wide range
of cross-silo FL frameworks, our software package provides
standard APIs. In this way, different cross-silo FL software can
utilize FLASH by harnessing its APIs (Section IV-D).

B. Modular Exponentiation and Multiplication Engines

To implement modular exponentiation and multiplication
operators as high-performance engines on hardware, FLASH
makes the following design decisions. First, instead of directly
offloading the modular exponentiation and multiplication op-
erators, we optimize the algorithms of the two operators to
make them suitable for the hardware implementation (Section
IV-B1). Second, based on the optimized algorithms, FLASH
further leverages pipelining technologies to efficiently execute
them with high parallelism (Section IV-B2). Third, we provide
sufficient on-chip memory for pipeline execution and make the
data transfer as part of the pipeline to efficiently exchange data
between off-chip memory and engines (Section IV-B3).

1) Algorithm Optimization: The mathematical formulas of
the two basic operators: modular exponentiation (1) and multi-
plication (2) are as follows:

P = me mod n m, e, n ∈ Z+ (1)

P = ab mod n a, b, n ∈ Z+ (2)

When used in cryptographic operations, all the numbers
a, b,m, n are large numbers, leading to high computation com-
plexity. Therefore, before designing FLASH’s engines, we first
apply some commonly-used optimization strategies in the cryp-
tographic research community to optimize the two basic oper-
ators, including Binary Exponentiation [43] and Montgomery
Modular Multiplication [44], etc. The advantages of using these
optimization strategies are: (1) lowering the number of mul-
tiplications used in modular exponentiation from O(2N ) to
O(N) (N is the bit-width of e), and (2) replacing the modulo
operation with the hardware-friendly bit-shifting operation.
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Fig. 5. Pipeline executions of both inter- and intra-engines.

After applying these optimization methods, FLASH’s mod-
ular exponentiation and multiplication operators require the
following four stages for the computation:

S1) Preparing common data needed in Montgomery space
based on the input data n. Since, in both Paillier and
RSA cryptosystems, n is decided by the public key, we
can re-use these prepared data for all computations with
the same public key. This is common in cross-silo FL
applications as they use one key for all cryptographic
operations within one application.

S2) Performing input data pre-precessing and converting
them into Montgomery space.

S3) Performing computation in Montgomery form. Major
operations in this stage include large-number multipli-
cation, addition, and bit-shifting. No modulo operation
is needed.

S4) Converting all output data of the operators out of Mont-
gomery space.

2) Pipelining: We next introduce how FLASH efficiently
performs the above four computation stages via inter- and intra-
engine pipelining.

Inter-engine pipelining: To enable inter-engine pipelining,
FLASH employs an engine pipeline stage manager to control the
execution strategies for different stages. Fig. 5 gives an overview
of how these stages are pipelined. First, FLASH reserves S1 as
a standalone stage, which can be executed in advance once it
obtains the public key. Second, for all computation tasks with the
same public key (Engine 1 and 3 in Fig. 5), they can be executed
in parallel once their data preparation is completed (S1). The
start time of these engines may have a small gap of several clock
cycles because FLASH adopts a round-robin strategy to dispatch
stage executions. Third, for tasks with different keys (Engine 2 in
Fig. 5), they can be executed independently.

Intra-engine pipelining: FLASH further performs intra-
engine pipelining within the most computation-intensive stage
S3 to accelerate the stage’s internal execution. The key design
goals are: (1) FLASH should support variable bit-widths thus
the application can choose the key length based on their security
requirements; (2) the hardware resources should be fully utilized
to achieve superb performance.

To achieve the first goal, FLASH builds an efficient pipeline
that processes data based on radix-2w arithmetic [45]. We use
w = 64 in FLASH’s implementation for the following three
reasons: 1) The Xilinx Multiplier IP [46] for FPGA supports

Algorithm 1: Montgomery Modular Multiplication.

inputs ranging from 1 to 64 bits wide. 2) When our multiplication
is implemented with the 64-bit basic multipliers, it reaches the
optimal performance per resource (DSP) compared to other
choices. 3) The key length used in cross-silo FL is larger than
64 b-width, thus w = 64 should support all required cases.
Given any input data, we split it into d w-bit integers. For
example, d = 16 when bit-width of X is 1024, and d = 32
when bit-width of X is 2048. Theoretically, the pipeline can
be adapted for input data with any bit-width as long as the
bit-width is or can be extended by complementary zeros to
the integer multiple of d. After data splitting, the complete
algorithm of S3 (Montgomery Modular Multiplication) is shown
in Algorithm 1. Note, compared to the original Montgomery
Modular Multiplication (shown in our supplementary materials),
we make the following optimizations to make the algorithm
more hardware-friendly: (1) the computation of S (i.e., line 6
of Algorithm 4.2 in our supplementary materials) is separated
into computations of lower w bits and higher w bits so that the
bit-width required in operations (e.g., addition) is halved; (2)
the first iteration of the inner loop where j = 0 is unrolled to
remove the conditionals in the original algorithm (i.e., line 7 to
9 of Algorithm 4.2 in the supplementary materials) and keep the
consistency of computation logic (equivalence are discussed in
Section IV.C of supplementary materials).

In Algorithm 1, the most computation-intensive operations
are the multiplications ofXj × Yi and q ×Nj respectively (both
operations require d2 w-bit multiplications). Moreover, the data
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Fig. 6. The Montgomery Modular Multiplication engine circuit design. Our circuit uses two multipliers and four on-chip RAMs for efficient pipelining.

Fig. 7. Efficient pipelining of Montgomery Modular Multiplication.

required in these two multiplications are totally independent.
Therefore, we use two multipliers (one 64-bit multiplier consists
of 32 DSP48E2 slices [47] on our FPGA prototype), Mul 1
and Mul 2, for these two multiplication operations and reuse
them to execute the rest of the multiplication operations as
well (operations assigned to Mul 1 and Mul 2 are marked
with red and green respectively in Algorithm 1). Since the
multiplier can continuously process data, to fully utilize the
multiplier, we have the following design decisions. First, we
design a circuit to fully pipeline the inner loop (line 10 to 16
of Algorithm 1). The circuit is shown in Fig. 6 and we will
introduce it later. Second, when the multiplications of i-th iter-
ation finish and some other operations are still under execution,
e.g., addition operations in the right part of the Fig. 6, FLASH
allows direct starting the multiplications in i+ 1-th iteration
to minimize the delay between different iterations. We also
use Fig. 7 to visualize how the operations in S3 are efficiently
pipelined.

Below we show how the circuit in Fig. 6 works. Since the outer
loop iterates over operand Y , the circuit sequentially reads dif-
ferent Yi from RAM Y and performs execution over them. The
workflow of our Montgomery Modular Multiplication circuit
contains four steps. Steps 1 and 2 in the following introduction
focus on the workflow for a fixed Yi while steps 3 and 4 show
how we bridge the operations between iterations with different
i and obtain the final result. We use Reg to represent the register
group.

1) X0 and Yi are sent to Mul 1 to get a 2w-bit multiplication
result. The higher w bits of the result are cached in Reg
r1. The lower w bits, denoted as α in Algorithm 1 in the
main text, are cached in both Reg α and r7. (The Add 1 is
bypassed at step 1 as we are using the circuit to calculateα,
and the inner loop of Algorithm 1 hasn’t started. Therefore,
we temporarily use r7 to store α without cache conflicting
through r1 to r7). The numbers stored in Reg α are used
for the calculation ofβ via Add 5. Withβ andN ′ available,
their multiplication result q can be obtained from the

output of Mul 2. After that, q is sent back to the input
of Mul 2 and multiplied with N0. Similarly, the higher
w bits of the multiplication result are cached in Reg r3
and the lower w bits are sent to Reg r8. Combining data
cached in r7 and r8, it is straightforward to get δ1 and
δ2 with several addition units. The results of addition, Z0

and C, are cached in Reg Z0 and Reg C for subsequent
operations.

2) Following step 1, the inner loop for j begins. Different
iterations of the inner loop are fully pipelined, which
implies the jth iteration is executed by the circuit just
one cycle after the (j − 1)th iteration. At the beginning
of the pipeline, Mul 1 and Mul 2 simultaneously calculate
Xj × Yi and q ×Nj . The higher w bits and lower w bits
of the results are separately cached in different registers.
Please note that we use Reg r5 and r6 to register the
higher w bits in the circuit for one more cycle compared
to the lower w bits so that δ1 can be calculated through the
addition between higherw bits from the (j − 1)th iteration
and lower w bits from the jth iteration (i.e., line 12 in
Algorithm 1 in the main text). After the calculation of
δ1, the subsequent calculation of δ2 can also be simply
executed by the adders in the pipeline. The intermediate
results, Zj−1 and C, are cached in RAM Z and Reg C.

3) We begin the execution of the (i+ 1)th iteration of the
outer loop when all the multiplications in the ith itera-
tion accomplish. Although some operations like addition
are still in progress, the multipliers are free to start the
multiplications in Step 1 for the (i+ 1)th iteration.

4) After accomplishing the outer loop, the result Z should
be stored in RAM Z. If Z < N , we directly output Z.
Otherwise, we calculate Z −N as the final output.

3) On-Chip & Off-Chip Memory: To provide sufficient on-
chip memory for efficient pipeline execution, FLASH allocates
four memory units for each modular multiplication and expo-
nentiation engine (shown in Fig. 6). For our FPGA prototype
implementation, we use 4× 36Kbit BRAM (Block RAM) units.
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Fig. 8. FLASH adopts hierarchical data distribution to enable efficient data exchange between on-chip and off-chip memory.

We use the 36Kbit BRAM as it is the smallest true dual-port
BRAM module available in UltraScale+ FPGA that supports
simultaneous read and write operations [48]. This size is suf-
ficient for our needs as we only store one single ciphertext in
each BRAM at any given time. While the on-chip memory is
mainly used for pipeline execution, FLASH further exploits
external memory (shown in Fig. 4) for input, output and interme-
diate data storage. To achieve high performance, data exchange
between on-chip and off-chip memory is part of the pipeline
itself. Specifically, FLASH primarily utilizes a sequential access
pattern to retrieve batches of input data. During the computation
of a particular batch, FLASH can proactively fetch data from
the subsequent batch, so that the data fetching time can overlap
with the computation time. Since FLASH can determine the
addresses of all batches in advance, it eliminates the need
for additional hardware design, such as a pre-fetcher, thereby
avoiding any associated costs or overhead. As the data fetch
time is typically shorter than the computation time, it effectively
hides the off-chip memory access latency, leading to perfect
pipelining.

As shown in Fig. 8(a), FLASH adopts AXI interconnect to
manipulate the external memory [49], [50]. However, as the
on-chip memory units are placed near each engine for low
latency, naïvely distributing data from the AXI interconnect to
these memory units, as shown in Fig. 8(b), leads to high fan-out
near interconnect and long data paths. These two issues will
cause (1) large design difficulties for circuits placement because
there are too many long paths to be placed near interconnect; (2)
degraded performance because long paths cause large delay for
the circuits.

To solve the problem, we design a hierarchical data distribu-
tion mechanism as shown in Fig. 8(c). Instead of directly sending
data to all engines, FLASH distributes data at multiple layers. At
each layer, the data distributors receive data from the previous
layer and further distribute data to the data distributors/engines
in the next layer. Suppose we have m engines and n layers,
the fan-out of each data distributor is approximately logn m,
which is much smaller than m. As a result, FLASH achieves a
much smaller fan-out and shortened logical data path. These two
advantages first reduce the design complexity because a small
fan-out with short logical paths will make the circuits’ place-
ment much easier. Furthermore, they also improve performance
because they allow a high operating frequency by restricting the
delay of all logic paths. In our FPGA implementation, the delay
of all logic data paths is within 3.3 ns, thus we can achieve a
high FPGA operation frequency of 300 MHz [51].

Moreover, the hierarchical data distribution module is de-
signed to be fully pipelined, ensuring no additional overhead
in terms of throughput. Although the hierarchical data dis-
tribution mechanism introduces some latency due to the pro-
cessing required by each module, it is important to note that
in throughput-sensitive scenarios such as data exchange, this
mechanism does not introduce notable overhead to the overall
end-to-end performance.

C. Dataflow Scheduling

We now introduce how FLASH composes various crypto-
graphic operations over basic engines through dataflow schedul-
ing. First, we show how our engines can work at different
modes (Section IV-C1). Then, we present how different cryp-
tographic operations are constructed by combining particular
engines (Section IV-C2).

1) Dynamic Engine Switching: To build various crypto-
graphic operations over basic engines, FLASH needs to enable
dynamic engine switching between modular exponentiation and
multiplication. Mathematically, modular exponentiation can be
realized by performing modular multiplication multiple times.
Thus, FLASH leverages a hardware control module to achieve
it without reconfiguring hardware (it is almost impossible to
reconfigure the ASIC). Specifically, to accelerate modular ex-
ponentiation, FLASH constructs a dataflow loop over the multi-
plication engine multiple times. In contrast, when the engine
needs to execute modular multiplication, FLASH directs the
dataflow through the modular multiplication engine once. While
the design works well for most cryptographic operations that
use either modular exponentiation or multiplication, it cannot
directly support operations that simultaneously require both
modular exponentiation and multiplication, e.g., Paillier encryp-
tion (O1), matrix multiplication (O5), in which FLASH has to
decide the ratio of engines in different modes.

How to decide the ratio? We use domain knowledge in cross-
silo FL applications to decide the ratio. Taking matrix multipli-
cation operation (O5) as an example, it first performs ciphertexts
and cleartexts multiplication (requires modular exponentiation)
and then ciphertexts addition (requires modular multiplication).
Considering the modular exponentiation, the exponent e is a
cleartext, which has a common bit-width of 64. As mentioned in
Section IV-B1, since we use Binary Exponentiation to optimize
the modular exponentiation, the number of modular multiplica-
tion required may vary from 64 to 127 depending on the specific
value of cleartext. On average, 96 modular multiplications are
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Fig. 9. Dataflow scheduling. Black arrow indicates all available paths for dataflow scheduling while red arrow indicates the active paths for a particular
cryptographic operation. Each engine slot can have multiple engines.

required. Thus, the throughput of the modular exponentiation
should be around 1/96 of modular multiplication. Based on
this, we can adjust the ratio of the engines working in different
modes to make the throughput of both modular exponentiation
and modular multiplication balanced. In this way, the hardware
resources can be efficiently utilized and no engines will sit idle.

2) Building Cryptographic Operations: As shown in Fig.
9(a), the core idea of dataflow scheduling is to use an on-chip
controller to dynamically determine: (1) which data paths (they
are logical paths that do not reflect the physical wiring) should
be active, and (2) what to put in the engine slots, based on
which operation is offloaded. Each engine slot contains one data
splitting module and one data merging module to distribute data
to different engines and aggregate results from these engines, re-
spectively. The data splitting and merging modules are equipped
with physical wires connecting them to all engines, establishing
a comprehensive network where each engine is linked to all split-
ting and merging modules. Therefore, by selectively activating
specific wires, we can precisely allocate engines to their respec-
tive engine slots, thereby determining the exact number of en-
gines accommodated in each slot. We also design a hierarchical
data distribution mechanism, as mentioned in Section IV-B3, for
better performance. Specifically, we can construct a Paillier en-
cryption operator by following the dataflow scheduling strategy
shown in Fig. 9(b). As mentioned in Section III-D, the Paillier
encryption follows equation: c = (1 +mn) · rn mod n2. So
we can distribute the data m,n, n2 to modular multiplication
engines (these engines are denoted E1) to calculate r1 = mn
mod n2 and distribute the data r, n, n2 to modular exponentia-
tion engines (these engines are denotedE2) to calculate r2 = rn

mod n2. Then the results can be further sent to modular mul-
tiplication engine (these engines are denoted E3) to calculate
(1 + r1)× r2 mod n2. Please note that the1 + r1 is completed
in the input data pre-precessing stage (S2 in Section IV-B1) with
a lightweight dedicated hardware module. The ratios of E1, E2

and E3 are determined through the strategies discussed above,
thus we can assign particular numbers of engines to these engine
slots. Similarly, Fig. 9(c) shows the dataflow used in Paillier
decryption. In this case, FLASH uses other modules besides
modular exponentiation and multiplication engines to realize the
decryption operation. In particular, we use CRT to optimize the
decryption algorithm as discussed in Section III-D, thus FLASH
implements several CRT modules to accelerate this operation.
We put all engines, working in modular exponentiation mode, in
the top left corner engine slot to achieve high resource utilization.

Engine Interconnection: Every single engine of FLASH can
support modular multiplication and exponentiation individually.

Fig. 10. FLASH integrates with cross-silo FL frameworks by providing an
integrated software package.

Listing 1: FLASH’s NumPy-like APIs.

Since most cryptographic operations require element-wise oper-
ations, they do not require engine interconnection. Thus, FLASH
uses data splitting and merging modules mentioned above to
achieve these operations. For some particular operations, such as
O5, they require data aggregation after some operations, such as
sum operation, we use tree-like aggregator rather than complex
interconnection to achieve it. The aggregator can be part of the
inter-engine pipeline to achieve high efficiency.

D. Software Integration

Fig. 10 illustrates how FLASH integrates with the cross-
silo FL software. While our current implementation integrates
FLASH with FATE, the design of FLASH is generic and works
with other cross-silo FL systems/frameworks. They can harness
FLASH by using the standard APIs.

For easy integration, FLASH provides Python NumPy-similar
APIs as shown in Listing 1. The Python APIs are also wrappers
of the C/C++ library: libfl.so. Besides providing standard
APIs, the libfl.so library manipulates the status of all in-
stalled FLASH accelerators, such as temperature, workload, etc.

By using these APIs, users can easily create encrypted scalar,
vector, or matrix via Paillier or RSA encryption method. Users
can further perform homomorphic addition and multiplication
operations over these data. To reduce the data exchange between
the FLASH accelerator and the host, we put the computation
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Fig. 11. Implementation details of FLASH.

results on the off-chip memory unless the get API is used. As
shown in Section IV-B3, the data exchange between on-chip
and off-chip memory is efficiently pipelined, leading to better
end-to-end performance. Moreover, since libfl.so works in
a stateless way, it can be easily scaled out to support different
tasks from various FL applications.

Multi-accelerator Support: The server-side software also en-
ables multi-accelerator support. If there are multiple FLASH
accelerators on the server, when applications invoke the APIs,
libfl.so will break the task into multiple sub-tasks and
dispatch them to multiple accelerators. The dispatching strategy
is least workload first, and can be configured to use different
strategies, such as round-robin.

V. IMPLEMENTATION

Prototype Implementation with FPGA: We implement
FLASH with FPGA using approximately 30,000 lines of Ver-
ilog [52] code. We use Xilinx Virtex UltraScale+ VU13P chip [7]
in our implementation. FLASH implements 300 modular expo-
nentiation and multiplication engines with the chip.

We now introduce how we place these engines and other
modules of FLASH on VU13P chip in detail. The programmable
resources of VU13P chip are distributed into 4 vertically-stacked
dies (also named SLR – Super Logic Region [53]) with similar
sizes. These dies are named die0, die1, die2 and die3
from bottom to top, as Fig. 11(a) indicates. The wiring re-
sources reside only between neighboring dies, such as die0-
to-die1,die1-to-die2, etc. Wiring between non-neighboring
dies involves multiple wirings between neighboring dies. Since
FLASH contains many different modules, e.g., 300 modular ex-
ponentiation and multiplication engines, data scheduling control
module, etc, properly arranging these modules on the four dies is
crucial to FLASH’s overall performance. The goal is two-fold:
1) the resource utilization of every single die is high; 2) the
wirings among dies should be as fewer as possible.

To achieve the goal, the core idea is to first place single mod-
ules which require large resource consumption to a specific die,
then distribute these 300 engines to fulfill the leftover resources
of each die, as shown in Fig. 11(a). The detailed procedure
has the following steps. (1) Determine the placement of the
Xilinx DMA (XDMA) module [54]. Since the PCIe interface

of VU13P resides on the die1, we place the XDMA module
on the same die to reduce the wiring complexity. (2) Determine
the placement of the DDR4 controllers. The VU13P chip has 4
DDR4 controllers on the 4 dies in total, which could be further
connected to 4 16 GB DDR4 RAMs. In FLASH’s design, we use
2 16 GB DDR4 RAMs, thus we place the two DDR4 controllers
on die2 and die3 respectively. Since DDR4 controller and
XDMA are both large modules, such placement could better
balance resource utilization. (3) Determine the placement of the
AXI interconnect module. The AXI interconnect is connected
with the XDMA module, the 2 DDR controllers and the engines,
which plays an important role in caching data on the external
memory (Section IV-D) and further distributing data from ex-
ternal memory to the engines. The AXI interconnect module
is placed on the die2. The advantage of such placement is
that the communication between XDMA and AXI interconnect
module, or between DDR4 controller and AXI interconnect
module, is occurred in the same die or between neighboring
dies, thus the wiring complexity is reduced. (4) Determine the
placement of other control modules. For example, the dataflow
scheduler is placed on the die2. We place it on the same die
of AXI interconnect since data will flow from interconnect to
the scheduler first, then to the engines. The CRT modules used
for decryption (Section IV-C2) are also placed on the die2
since the decrypted data will be sent back to the scheduler as
the final step. (5) Determine the placement of engines. After
placing these large modules, we will distribute the 300 modular
exponentiation and multiplication engines into 4 dies. As the
Fig. 11(a) indicates, there are 90, 60, 60, 90 engines on die0,
die1, die2, die3, respectively.

As mentioned in Section IV-B3, FLASH adopts a hierarchical
data distribution mechanism to distribute from external memory
to massive engines. Considering specific implementation with
VU13P chip, we take the following approaches. First, we estab-
lish 4 wires from the AXI interconnect to each die (since AXI
interconnect is on die2, 3 wires are across dies) as the first data
distribution layer. Second, we further adopt hierarchical data
distribution mechanisms within each die. For die0 and die3,
we further construct two data distribution layers, with 1-to-5 and
5-to-18 distributors (please see Section IV-B3 for a more detailed
description of distributors) on each layer, respectively. Thus,
it could support 5× 18 = 90 engines. For die1 and die2,
we also construct two data distribution layers, with 1-to-6 and
6-to-10 distributors, respectively.

After placing all modules, we finally perform optimizations
over cross-die wires. The idea is leveraging Laguna regis-
ters [55]. Laguna registers are special registers designed for
cross-die connections and reside at the edge of each die. As
shown in Fig. 11(b), we add two registers in the cross-die
wire, and set constraints to map the two registers to Laguna
registers during placement. The advantage is: (1) the cross-die
wire is shortened (the wire between the two registers), and (2)
the Laguna registers could further optimize the communication
latency [55].

Table III demonstrates the resource utilization of FLASH in
detail. As a final note, the operation frequency of our FPGA im-
plementation is 300 MHz while we achieved 88% DSP resource
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TABLE III
RESOURCE CONSUMPTION OF THE FPGA PROTOTYPE

TABLE IV
FPGA TYPES PROVIDED BY THE MAJOR CLOUD VENDORS

utilization, which, to the best of our knowledge, is relatively high
in FPGA’s industry [56].

Server-side Software Stack Implementation: Our implemen-
tation of FLASH’s server-side software contains around 10,000
lines of C/C++ and Python code. This includes modifications
of FATE to harness FLASH’s acceleration capacity. We mainly
modify the federatedml module [57] in FATE by replac-
ing normal collection operations with FLASH’s NumPy-like
APIs. We further use XDMA IP Reference driver [54] for high-
performance direct memory access through the PCIe interface.

Evaluating FLASH as ASIC: We leverage multiple standard
softwares to assess the FLASH design as an ASIC. Specifically,
we first use Synopsys Design Compiler [15] to convert FLASH’s
design logics into physical implementations, i.e., netlist, over
both 12 nm and 28 nm technology libraries. Then, we use
Synopsys VCS [16] to verify that the generated netlist func-
tions correctly and use Synopsys Prime Time [17] for static
timing analysis to validate that the netlist satisfies all timing
constraints. More evaluation results of the ASIC performance
will be discussed in Section VII-E.

VI. FLASH ON CLOUD

Recently, people are moving cross-silo federated learning
to the cloud. Thus, in this section, we are discussing whether
FLASH’s design can be directly used on the cloud or what
changes we should make to make our design feasible on the
cloud.

FPGA types provided by major cloud vendors: First, to in-
vestigate whether FLASH’s design can be directly used on the
cloud, we have surveyed the FPGA types provided by four cloud
vendors: Amazon AWS, Microsoft Azure, Alibaba Cloud and
Huawei Cloud. These vendors have provided the virtual machine
instances that provide FPGA as a service. Table IV summarizes
the FPGA types provided by these cloud vendors and we have
the following observations:
� Microsoft Azure NP instance [59] provides Xilinx U250

acceleration card [61] with Xilinx Virtex UltraScale+
VU13P FPGA chip [7], which is identical to our in-house

FPGA implementation (Section V). Therefore, we can
directly deploy FLASH in the Microsoft Azure Cloud.

� Other cloud vendors, including Amazon AWS F1 instance,
Alibaba Cloud f3 instance and Huawei Cloud fp1 instance,
provide several VU9P FPGAs [18], [58], [60]. Since VU9P
has around half programmable resources of VU13P chip,
we cannot directly apply FLASH’s design to VU9P. How-
ever, considering the popularity of VU9P chip on the
public cloud, we decide to migrate FLASH’s FPGA design
to match that of a VU9P FPGA chip. This migration is
feasible since VU9P and VU13P share similar fundamental
components.

In the following sections, we will introduce how we migrate
FLASH’s design on Alibaba Cloud f3 instances which have two
VU9P FPGA chips. We will evaluate the performance of FLASH
on cloud with its FPGA prototype in Section VII-B.

FLASH on Alibaba Cloud: For management purpose, cloud
vendors reserve a particular area on the FPGA chip for fixed
functions, which users cannot modify. Specifically, Alibaba
Cloud adopts a shell + role architecture, which is shown in
the online document [18]. The XDMA modules of the two
VU9P chips are placed in the static shell region. Moreover, one
DDR controller of each VU9P is also in the shell region due to
constrains from the vendor. The other modules will be put in the
role region, which can be configured by the user. Since the static
shell region occupies a certain chip area that cannot be modified,
the timing constraints of FPGA on the cloud are harder to meet.
Therefore, we put 148 engines on each VU13P provided by
Alibaba Cloud f3 instance, reducing the total number of FLASH
engines from 300 to 296.

VII. EVALUATION

In this section, we first present our evaluation methodol-
ogy (Section VII-A). Then we show that for the nine crypto-
graphic operations, FLASH achieves up to 14.0× and 3.4×
acceleration over CPU and GPU (Section VII-B), translating up
to 6.8× and 2.0× speedup for realistic FL applications (Section
VII-C), respectively. Finally, we evaluate the performance of
FLASH as an ASIC (Section VII-E).

A. Methodology

Environment Setup: We utilize the identical testbed mentioned
in Section III-B for consistency. Additionally, each server is
equipped with a single FLASH acceleration card. For our multi-
accelerator experiment, multiple acceleration cards are installed
on each server. Furthermore, in the multi-participant experiment,
we will employ up to five of these servers.

Schemes Compared: We mainly compare the performance
achieved by FLASH with that achieved by: (1) Original FATE
that uses a highly-optimized GMP library to execute crypto-
graphic operations with CPU (denoted as CPU in the following
charts). We choose Intel Xeon Silver 4114 CPU similar to prior
works [10]. All CPU experiments are executed with all ten
physical cores in parallel. (2) GPU-based accelerator (denoted
as GPU). We extend the GPU implementation of HAFLO [6]
which only implements logistic regression. Note that only the
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Fig. 12. Performance of cryptographic operations.

Fig. 13. Evaluation results of FLASH on Alibaba Cloud with two Virtex
UltraScale+ VU9P FPGAs.

cryptographic operations are accelerated by GPU in our ex-
periments. We use NVIDIA P4 GPU because it has the same
technology of 16 nm and achieves the closest INT8 TOPS as
FLASH (although 2× better. P4 reaches around 20 INT8 TOPS
while FLASH achieves 12.9 INT8 TOPS).

Performance Metrics: We use the number of operations per-
formed per second (OP/s) as the metric when evaluating the
performance of cryptographic operations, and acceleration ratio
over CPU/GPU as the metric when evaluating FL applications.

B. Cryptographic Operations

To demonstrate that FLASH can efficiently accelerate the
nine cryptographic operations, we compare the performance
achieved by CPU, GPU, and FLASH, respectively. For oper-
ations O4 and O5, we also evaluate different exponent bit-
widths (32bit – 1024bit). The experiment results are shown in
Fig. 12(a). In general, FLASH can consistently outperform
CPU and GPU for all cryptographic operations. Specifically,
FLASH outperforms CPU by 7.7× – 14.0× and GPU by 1.4×
– 3.4×, showing that FLASH’s hardware architecture fits the
computational requirements of these cryptographic operations.
Furthermore, we observe that when handling a larger exponent,
FLASH tends to achieve a better acceleration ratio. For example,
FLASH achieves 13.6× acceleration than CPU when evaluating
O4 with e = 1024bit, but drops to 7.7× with e = 32bit. The re-
sults show that when the computation is more intensive, i.e., with
a large exponent, FLASH can achieve even better performance.

Multi-accelerator Support: We inspect how FLASH performs
when we use multiple FLASH acceleration cards to speed
up cryptographic operations. We evaluate one, two and three
accelerators, denoted as FLASH-1, FLASH-2 and FLASH-3
respectively. For space limitation, we only pick some operations
for demonstration: O1, O2, O3, O4 with e = 1024bit, O5 with
e = 1024bit, and O7. The results are shown in Fig. 12(b). We

observe that for most cryptographic operations, e.g., O1, O2,
O4, O5 and O7, the overall performance of FLASH is almost
linear to the number of accelerators: FLASH-2 achieves 1.90×
– 1.98× while FLASH-3 achieves 2.89× – 2.95× speedup for
these operations. However, for O3, FLASH-2 and FLASH-3
only achieve 1.47× and 1.80× acceleration, respectively. The
reason is as follows: the computation workload of O3 is rela-
tively low, thus the control overhead, e.g., multi-accelerator syn-
chronization, takes a considerable portion, leading to non-linear
speedup. However, in the real-world use case, we envision that
FLASH with multiple accelerators would still be an efficient
solution to accelerate large-scale cross-silo FL applications.

Comparison with Other Paillier Accelerators: To give readers
a better understanding of how efficient the FLASH’s hard-
ware design is, we further compare FLASH with some state-
of-the-art hardware-based solutions, e.g., Paillier Cryptopro-
cessor (PCP) [62], HLS [64], and SoC [65] based solutions.
Moreover, due to the limited hardware resources, some of
these works only implement a subset of cryptographic opera-
tions supported by FLASH. The comparison results are shown
in Table V. PCP and HLS report their data with public key
N = 1024 bit, while SoC uses N = 2048 bit, thus we report
the performance of FLASH with both N = 1024 and 2048
bit. The results show that, compared to PCP, HLS and SoC,
FLASH consumes 10.97×, 1.80×, 4.88× DSP resources, but
delivers 28.95×, 7.77×, and 10.75× encryption acceleration
and 93.15×, 20.56×, and 34.38× decryption acceleration, re-
spectively. The results demonstrate that by using inter- & intra-
engine pipelining and dataflow scheduling, FLASH can (1) de-
liver much better performance if utilizing comparable resources,
and (2) support more complete functions.

Performance of FLASH on Alibaba Cloud: We use f3 instance
with 2 Xilinx Virtex UltraScale+ VU9P FPGAs. The server is
equipped with 32 vCPU (Intel Xeon Platinum 8163 Skylake),
128 GB RAM and 200G ESSD. Fig. 14 demonstrates the results
and we have normalized the performance of FLASH on Alibaba
Cloud to the performance of FLASH’s FPGA prototype for
better visualization. We have observed that for most operations,
FLASH on Alibaba Cloud achieves comparable performance
as its FPGA prototype with a performance degradation of less
than 5%. An interesting finding is that the modular multi-
plication with FLASH on cloud is even faster than its local
FPGA (16% better). The observed 16% impact on performance
can be attributed to the following factors: 1) individual modular
multiplication operation is highly efficient, resulting in I/O time
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TABLE V
RESOURCE CONSUMPTION & PERFORMANCE COMPARISON AMONG FLASH AND OTHER PAILLIER ACCELERATORS

Fig. 14. Performance of RSA-PSI, VLR, SBT, and HLR with changing data volumes.

TABLE VI
MODELS & DATASETS USED IN EVALUATION OF FLASH

accounting for approximately 70% of the overall execution time;
2) the Alibaba Cloud utilizes a superior SSD, leading to a
significant reduction in I/O time.

C. Cross-Silo FL Applications

We then present how FLASH can accelerate real-world cross-
silo FL applications, including both vertical and horizontal.
The models and datasets used are shown in Table VI. For
vertical FL, before performing the model training algorithms,
we first run a commonly used sample alignment algorithm:
RSA blind signature-based PSI (RSA-PSI). Then, we perform
Vertical Logistic Regression (VLR) [32] and Secure Boosting
Tree (SBT) [30] algorithms over the data intersection (generated
from PSI), respectively. For horizontal FL, we mainly evaluate
Horizontal Logistic Regression (HLR) and five deep learning
applications with different parameters. Each application runs a
fixed number of epochs.

RSA-PSI, VLR, SBT, and HLR: The performance of RSA-PSI,
VLR, SBT, and HLR is related to the data volumes. Thus we
evaluate FLASH with different data volumes. The results are
shown in Fig. 15. In general, FLASH consistently outperforms
CPU and GPU by achieving 1.6× – 6.8× and 1.1× – 2.0× ac-
celeration ratio respectively. The results have demonstrated that
by designing a tailored hardware acceleration architecture for
cross-silo FL, we can effectively speed up FL applications and
outperform the existing CPU/GPU architectures. Furthermore,

Fig. 15. Performance of five deep learning applications.

we also notice that for RSA-PSI and VLR, GPU tends to reach
a similar acceleration ratio as FLASH while processing more
data. The reason is that for RSA-PSI and VLR, the cleartext
computation, which is purely executed on the CPU, takes a
significant portion of the total computation time. For example,
in VLR, when handling 50K data samples in one epoch, after
sufficient acceleration, the ciphertext computation takes <10%
of the total computation time. Therefore, the performance is
mainly decided by the time of cleartext computation when
the cryptographic operations are sufficiently accelerated, which
leads to the results that FLASH and GPU achieve similar accel-
eration ratios over CPU. In contrast, for HLR and SBT, FLASH
can achieve a higher acceleration ratio than GPU because the
cryptographic operations of these two applications consume a
significant portion of the total computation time.

Deep Learning Applications: We have further evaluated five
deep learning models of different numbers of parameters with
horizontal FL. The results are shown in Fig. 15. We find that
FLASH can outperform CPU and GPU by achieving 4.1× –
5.4× and 1.2× – 1.6× acceleration ratio respectively due to a
similar reason discussed above. Furthermore, we note that for
models with more parameters, e.g., DenseNet169, ResNet50,
VGG16, FLASH can achieve a higher speedup than models with
fewer parameters, e.g., MLP, LSTM. This experiment implies
that for more computation-intensive tasks, FLASH can deliver
more notable results.

Performance on Alibaba Cloud: We also evaluate the perfor-
mance of cross-silo FL applications with FLASH on Alibaba
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Fig. 16. FLASH deep-dive.

Cloud. The results obtained were nearly identical to our local
evaluations, with a variance of less than 5%.

Correctness: In addition to evaluating the performance of the
above nine cross-silo FL applications, we also validate the final
results of all compared schemes (we avoid the randomness by
setting an identical random seed). Results have shown that all
schemes yield identical results, showing that FLASH does not
affect the correctness of model training.

Summary: Implemented as an FPGA prototype, FLASH has
already largely outperformed CPU and achieved moderately
better performance than GPU with comparable price. We also
understand that high-end GPUs, e.g., A100 [11], H100 [12],
may outperform FLASH’s FPGA prototype due to more ad-
vanced foundry technology, which are also of much higher
price. However, they still share the drawbacks as mentioned in
Section III-C. The goal of our paper is to design a more efficient
hardware acceleration architecture for cross-silo FL beyond
existing CPU/GPU architectures. As we will demonstrate in
Section VII-E, if implemented as an ASIC, the performance of
FLASH can be significantly improved, which should boost the
acceleration ratio for these applications to a much higher level.

D. FLASH Deep-Dive

In this part, we mainly investigate the followings:
1) How does the number of participants affect the perfor-

mance of FLASH?
2) How does the varying network bandwidth affect the per-

formance of FLASH?
3) What’s the performance breakdown of FLASH?
4) How can FLASH cooperate with other cross-silo FL op-

timization mechanisms?
Number of Participants: We evaluate VLR with two to five

participants and measure the acceleration ratio of FLASH over
CPU. The experiment result is shown in Fig. 16(a) and we
observe that in general, the number of participants does not
largely impact the acceleration of FLASH.

Varying Bandwidth Setting: In this part, we usenetem [31] to
limit the available bandwidth between the two participants from
10 Mbps to 100 Mbps. We run VLR and measure the execution
time of one iteration with both CPU and FLASH. Fig. 16(b)
shows the results and we can observe that when the bandwidth
is over 50 Mbps, the running times of both CPU and FLASH
are stable, where FLASH outperforms CPU by around 3×. The
results show that the varying network bandwidth does not have
a noticeable impact on FLASH.

Fig. 17. FLASH can consistently accelerate VLR with small dataflow schedul-
ing overhead.

Fig. 18. FLASH can further accelerate other cross-silo FL optimization strate-
gies.

Performance Breakdown: We now dig deep to investigate how
FLASH can accelerate different sub-tasks within one applica-
tion. We also investigate the overhead of the dataflow scheduling
mechanism when offloading different cryptographic operations
in different sub-tasks. We mainly show the percentage of over-
head over the total execution time. We use VLR as an example
here. We also follow Table II to break the application into 6
sub-tasks, i.e., S1: encrypting logits to S6: computing loss. The
results are shown in Fig. 17 and we have the following two
results.

First, we observe that FLASH can achieve 2.0× – 9.0×
acceleration regarding different sub-tasks. Towards the sub-task
with the lowest acceleration ratio: S5, we find that the exe-
cution time of this task is relatively short, thus the software
overhead takes a significant portion, leading to a relatively low
acceleration ratio. Second, the overhead of switching among
different cryptographic operations via dataflow scheduling is
within 1% of the total execution time, which can be ignored. It
confirms that by designing the dataflow scheduling mechanism
on FPGA, FLASH can efficiently react to applications’ diverse
cryptographic operations usage patterns with small overhead.

Cooperation with Other Optimization Mechanisms: We eval-
uate how FLASH works when cooperating with other cross-silo
FL optimization mechanisms. First, we will show FLASH’s per-
formance towards evolving algorithm. To show it, we evaluate
FLASH with SecureBoost from both FATE v1.5 and FATE v1.6.
The SecureBoost in FATE v1.6 has a more efficient decision
tree building strategy [75], thus it yields better performance
than SecureBoost in FATE v1.5. The evaluation results are
shown in Fig. 18(a). We can observe that the SecureBoost in
FATE v1.6 achieves 14% better performance than the one in
FATE v1.5. Nevertheless, FLASH can still deliver a comparable
acceleration ratio for the improved version of SecureBoost (1.4×
v.s. 1.5×) although SecureBoost in FATE v1.6 has a shorter
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TABLE VII
ASIC RESOURCE EVALUATION FOR BOTH 28 NM AND 12 NM TECHNOLOGY LIBRARIES

time of cleartext computation, causing the computation time of
cryptographic operations over total execution time to decrease.
Second, we will evaluate whether FLASH can further acceler-
ate one state-of-the-art cross-silo FL optimization mechanism:
BatchCrypt [76]. BatchCrypt accelerates FL by packing a batch
of integers into one integer for Paillier encryption to reduce the
cost of Paillier encryption. The experiment results are in Fig.
18(b). We show that FLASH can further accelerate BatchCrypt
by up to 7.9×, which can achieve more than 20× acceleration
ratio compared to pure CPU execution.

In summary, the above experiments show that FLASH is a
general and practical solution. FLASH can effectively accel-
erate cross-silo FL applications by accelerating these common
cryptographic operations used in FL applications.

E. ASIC Performance Assessment

Given that our FPGA-based prototype implementation of
FLASH has performance limitations due to the intrinsic draw-
back of FPGA (e.g., low operation frequency), in this section
we intend to demonstrate some preliminary results of how
FLASH performs as an ASIC. As introduced in Section V,
we use standard software tools to assess the performance of
FLASH if implemented as an ASIC. We evaluate FLASH’s
ASIC implementation with two technology libraries: 28 nm and
12 nm. Based on the industry experience, we set the operating
frequency to be 1000 MHz and 1400 MHz, respectively, for
these two technology libraries. Furthermore, we set the die area
to be around 130 mm2. We believe this setting could balance the
performance and power consumption for FLASH.

The detailed evaluation includes the following steps: First, we
perform logic synthesis using Synopsys Design Compiler [15]
to convert FLASH’s design into netlist under the frequency and
die area constraints. Table VII illustrates the results. With 28 nm
technology library, we can allocate 800 modular multiplication
and exponentiation engines successfully, while with 12 nm
technology library, we can allocate 1900 such engines. Second,
we use Synopsys VCS [16] and Synopsys Prime Time [17] to
confirm that both netlists are valid and function correctly. The
third step is to estimate the performance gain of FLASH as
an ASIC. Since the actual operating frequency after physical
design should be lower than logic synthesis, we reduce the actual
operation frequency by multiplying 80% by the design target for
a conservative purpose.

Then, our final performance estimation is as follows. With
28 nm technology library, we can allocate 2.67× engines com-
pared to our FPGA implementation (800 v.s. 300), and the

operation frequency of these engines is 2.67× that of the FPGA
implementation (800 MHz v.s. 300 MHz), leading to an over-
all 7.11× performance gain on modular exponentiation opera-
tor (we use modular exponentiation operator as the metrics since
it can fulfill the computation capacity of an engine). With 12 nm
technology library, we can allocate 6.33× engines (1900 v.s.
300) with 3.73× operation frequency (1120 MHz v.s. 300 MHz),
and achieve 23.64× overall performance improvement. To give
our readers a better understanding of FLASH’s performance as
an ASIC, we also evaluate the modular exponentiation operator
with a state-of-the-art GPU – NVIDIA A100 [11], our results
show that A100 can only achieve 5.78× performance gain than
our downscale FPGA prototype. Finally, we estimate the power
consumption for a single engine, which is 16.6 mWatt with
28 nm technology library. Thus, the total power consumption
for all engines is 13.28 Watt. Although we do not have the
power consumption data of other parts, e.g., PCIe controller,
we believe the total power consumption of FLASH as an ASIC
should be significantly lower than the 120 Watt of our FPGA
implementation.

Peak Memory Analysis: Existing hardware accelerators for
FHE argue that their major design challenge is how to allocate
adequate memory bandwidth for data movement [77], [78],
[79]. However, FLASH does not require such high memory
bandwidth because PHE and traditional cryptosystems do not
inflate plaintext as much as FHE [80]. For example, when the
public key N = 1024bit, as shown in Fig. 12(a), FLASH can
reach a maximum performance of 1000 kOP/s for most crypto-
graphic operations. While the input size has a maximum length
of 4096 b, the peak memory bandwidth required in FLASH’s
FPGA prototype is 488 MB/s. While the ASIC has a 23.6×
performance improvement, it does not exceed the usual memory
bandwidth of DDR4, around 16 GB/s.

VIII. RELATED WORKS

Accelerating FL: Recently, due to the increasing deployment
of FL, various research works have emerged to accelerate FL.
MAGE proposes to optimize the secure computation from a
memory perspective [81]. BatchCrypt tries to optimize the Pail-
lier encryption by encoding a batch of quantized gradients into
a long integer and encrypting it in one batch [76]. VF 2 Boost
proposes a novel training protocol to reduce the idle time of
each participant [24]. Relative to them, we design FLASH from
a different angle: accelerating the cryptographic operations used
in FL, and our FLASH could be easily combined with these prior
works.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 20,2024 at 01:15:56 UTC from IEEE Xplore.  Restrictions apply. 



1522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Domain Specific Accelerator (DSA): DSA has recently been
an emerging research topic that adopts hardware, e.g., FPGA,
ASIC, etc, to accelerate particular applications [10], [78], [79],
[82], [83], [83], [84], [85], [86]. For example, Tiara [82] uses
FPGA and a programmable switch to accelerate layer-4 load
balancing. FlowBlaze [83] offloads complex networking func-
tions to a NetFPGA SmartNIC. hXDP [84] proposes to use
FPGA to accelerate eBPF programs for fast XDP execution.
MicroRec [85] offloads neural networks to FPGA to implement
efficient recommendation systems. POCLib provides a high-
performance framework for enabling near orthogonal processing
on compression [87]. Various DSAs have been proposed to
accelerate fully homomorphic encryption (FHE) [88], such as
HEAX [10], F1 [77], BTS [78] and CraterLake [79]. Similar
to them, FLASH follows the principle of DSA to design a
hardware-based solution to efficiently accelerate cross-silo FL.

IX. CONCLUSION

This paper presented FLASH, a hardware acceleration archi-
tecture for cross-silo FL. We have provided a fully functional
FPGA prototype and evaluated our design as an ASIC. Exten-
sive experiments with realistic applications and cryptographic
operations have shown that FLASH is a viable solution.
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