
Achieving Fairness Generalizability for

Learning-based Congestion Control with Jury

Han Tian1, Xudong Liao2, Decang Sun2, Chaoliang Zeng3∗, Yilun Jin2, Junxue Zhang2, Xinchen
Wan2, Zilong Wang2, Yong Wang2, Kai Chen2

1University of Science and Technology of China
2iSING Lab, Hong Kong University of Science and Technology 3BitIntelligence

Abstract

Internet congestion control (CC) has long posed a challeng-
ing control problem in networking systems, with recent
approaches increasingly incorporating deep reinforcement
learning (DRL) to enhance adaptability and performance.
Despite promising, DRL-based CC schemes often suffer from
poor fairness, particularly when applied to network environ-
ments unseen during training. This paper introduces Jury,
a novel DRL-based CC scheme designed to achieve fairness
generalizability. At its heart, Jury decouples the fairness con-
trol from the principal DRL model with two design elements:
i) By transforming network signals, it provides a universal
view of network environments among competing flows, and
ii) It adopts a post-processing phase to dynamically module
the sending rate based on flow bandwidth occupancy estima-
tion, ensuring large flows behave more conservatively and
smaller flows more aggressively, thus achieving a fair and
balanced bandwidth allocation. We have fully implemented
Jury, and extensive evaluations demonstrate its robust con-
vergence properties and high performance across a broad
spectrum of both emulated and real-world network condi-
tions.

CCS Concepts: • Networks → Transport protocols; •
Computing methodologies → Machine learning ap-

proaches.

Keywords: Congestion Control, Reinforcement Learning,
Transport Protocol
ACM Reference Format:

Han Tian, Xudong Liao, Decang Sun, Chaoliang Zeng, Yilun Jin,
Junxue Zhang, Xinchen Wan, Zilong Wang, Yong Wang, Kai Chen.
∗Work done while Chaoliang was at iSING Lab @ HKUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696065

2025. Achieving Fairness Generalizability for Learning-based Con-
gestion Control with Jury. In Twentieth European Conference on
Computer Systems (EuroSys ’25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3689031.3696065

1 Introduction

Internet congestion control (CC) has become one of the most
classic control problems in networking systems. Recently,
inspired by great successes achieved by deep reinforcement
learning (DRL) in various aspects (e.g., games [28, 29, 37],
computer systems [15], and networking [25, 26, 45]), CC re-
searchers are exerting efforts on incorporating DRL into the
CC problem [1, 17, 23, 40]. Due to the automatic learning pro-
cess, DRL-based CC schemes provide superior performance
over conventional protocols while freeing networking engi-
neers from the tedious manual tuning of hard-wired control
rules.

Despite being promising, DRL-based solutions are far from
a silver bullet for the CC problem, primarily due to their
inconsistency in meeting essential properties of CC tasks,
particularly with regard to fairness. Internet congestion con-
trol tasks necessitate a guaranteed fair convergence prop-
erty. However, the neural network models underlying DRL
pipeline operate by stochastically updating and approximat-
ing the policy [21]. This stochastic nature complicates the
integration of inherent properties such as fairness into the
model.
To achieve fairness for learning-based CC schemes, pre-

vious protocols can be divided into three categories: (i) on-
line exploration schemes that adopt trial-and-error online
exploration (e.g., Vivace [7], Libra [8]), where the fairness
is achieved through the convergence of a social concave
game [11]; (ii) hybrid control schemes (e.g., Orca [1]) that
introduce classic algorithms (such as Cubic) to attend to con-
vergence properties; (iii) pure DRL-based schemes that add
fairness-related metrics into the learning process to teach
the model to behave fairly (e.g., Pareto [9], Astraea [22]).

However, current solutions fail to achieve efficient fairness
across various network environments. On one hand, solu-
tions in (i) require testing different sending rates/policies
in real-time, observing the feedback, and deciding which
action is good for the next iteration. The exploratory pro-
cess consumes multiple RTTs, leading to slow convergence

https://doi.org/10.1145/3689031.3696065
https://doi.org/10.1145/3689031.3696065
https://doi.org/10.1145/3689031.3696065

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

when the RTT is large. On the other hand, while trained to
exhibit substantial fairness within controlled environments,
learning-based solutions in (ii) and (iii) both show degraded
convergence when applied to unseen network environments,
thereby limiting their practical deployment on the open In-
ternet. For example, Astraea adds a fairness metric into its
learning reward to ensure fairness. When trained on links
with bandwidth up to 100Mbps, it demonstrates perfect fair-
ness in its training environment. However, the learned fair-
ness behavior fails to generalize when applied to unseen
environments with larger bandwidth (350 Mbps), as shown
in Figure 1.

In this paper, we ponder a fundamental question: is it pos-
sible to design a DRL-based CC scheme that achieves efficient
fairness across various network environments, independent of
its training domain?We define the ability of a learning-based
CC scheme to sustain fairness across unseen network envi-
ronments as fairness generalizability, and focus on enhancing
it in this paper.
To answer the question, we investigate the root cause

of poor fairness generalizability observed in previous DRL-
based schemes (§2.2). We identify a fundamental observation:
there is an inherent trade-off between achieving fairness
within a known network environment and extending this
fairness to unexplored environments. To reach a fair equilib-
rium, the policy model requires bandwidth-related signals to
learn differentiated flow behaviors, enabling large flows to
yield bandwidth to smaller ones. However, these signals also
introduce a divergence in the model input across network
environments with varying bandwidth capacities, leading
to generalizability issues. Previous works generally include
bandwidth/throughput in the model input, therefore ensur-
ing fairness in limited network scenarios at the cost of its
generalizability.

Inspired by the dilemma, we argue that to achieve gener-
alizable fairness, we need to decouple the task of ensuring
fairness from the primary DRL model, therefore remain-
ing unaffected by the learning process. We present Jury, a
DRL-based CC scheme that achieves both theoretical and
empirical generalizable fairness across various network en-
vironments. Jury is characterized by two key components.

• Jury designs an RL decision-making process that deliber-
ately omits bandwidth-related signals. For the model input,
we identify a set of observable network signals that are
independent of the current flow bandwidth occupancy. For
the model output, instead of directly generating the send-
ing rate adjustment, it outputs a decision range. Trained
with these invariant signals, flows competing with the
same bottleneck receive uniform signal inputs and output
the same decision range, regardless of their bandwidth
utilization (§3.1).
• Jury further adopts a post-processing phase to dynami-
cally decide sending rate adjustment from the decision

Th
r (

M
bp

s)

0

50

100

0 50 100 150 200 250 300

(a) 100Mbps, 30ms RTT

Th
r (

M
bp

s)

0

200

400

0 50 100 150 200 250 300

(b) 350Mbps, 30ms RTT

Figure 1. Astraea cannot generalize its learned fairness in
3-flow case to unseen environments.

range based on the flow’s current bandwidth utilization es-
timation. We utilize sending rate changes and throughput
responses to gauge the flow bandwidth utilization, which
is then used to modulate the output sending rate. The
phase differentiates the behavior of competing flows, mak-
ing large flows more conservative and smaller flows more
aggressive, thus promoting a fair and balanced allocation
(§3.2).
With robust assurance of fairness generalizability, Jury

extends its efficient fairness from emulated training envi-
ronments to real-world networks, adapting to diverse link
characteristics and varying numbers of competing flows.
Additionally, the sufficient network information encoded
in the input signals ensures the learning capabilities of the
DRL model (§3.1), thereby maintaining its consistently high
performance across various network environments.
We have implemented and trained Jury in Linux servers

supported by customized kernel modules (§4). Extensive eval-
uations (§5) show that Jury demonstrates consistently good
fairness properties across i) various network environments
with different link characteristics and ii) homogeneous and
heterogeneous competing scenarios, including intra-protocol
fairness, RTT fairness, and fairness between long-short flows
(§5.1). Also, Jury maintains consistently high performance
across various emulated environments and real-world Inter-
net (§5.2) (bandwidth ranging from 5Mbps to 10Gbps, base
one-way delay from 10ms to 400ms, and loss rate from 0 to
1.5%). The source code of Jury is available for the community
at: https://github.com/tianhan4/jury.

2 Background and Motivation

2.1 DRL-based Congestion Control

Recently, deep reinforcement learning has gained broad inter-
ests in tackling congestion control challenges [1, 17, 23, 40].
DRL-based CC schemes are trained on network environ-
ments where the flow agent interacts with the environment

https://github.com/tianhan4/jury

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

to gather training data. The flow agent works in a time-
interval manner: for the 𝑡-th time interval, it observes net-
work signals (e.g., throughput, latency, and loss) from the
environment as its input state 𝑠𝑡 ∈ S and generates action
𝑎𝑡 ∈ A to adjust the sending rate. The link state may change
after the flow’s action, and the flow agent will receive a new
state 𝑠𝑡+1. During the interaction, the agent obtains a reward
𝑟𝑡 from the environment and updates the policy based on 𝑟𝑡
to build the mapping between the input state and the output
action. The DRL agent refines its control policy during the
training process to maximize the discounted cumulative ex-
pected reward J = E(∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡) during the lifetime of the

flow, where 𝛾 is a discounted factor. Based on these data, a
well-learned policy drives states to actions that lead to high
performance.
Why reinforcement learning? DRL shows its superiority
in congestion control with its data-driven learning nature,
where the control policy is learned through real-world data
without human intervention. This ability not only diminishes
the reliance on the manual design of heuristic mappings and
hyperparameter tuning but also enables continuous perfor-
mance improvement through the adaptation to new data and
experiences collected at end hosts [23, 46]. Contrastingly,
traditional heuristic-based solutions are time-intensive and
sophisticated processes that require substantial input and
trial-and-error from experienced network professionals. The
extensive efforts exerted by Google engineers in adapting the
BBR protocol for diverse network environments like cellular
links underscore this point [1].

2.2 Generalizable Fairness Issue

The generalizability of a DRL model defines its capability
to perform well in environments that have never been seen
during training. In the context of congestion control, it rep-
resents the ability to generalize to various network envi-
ronments such as i) links with different bandwidths, delays,
and loss rates; ii) congested links with various numbers of
competing flows, and so on.

Several existing works have been focusing on improving
the fairness of learning-based CC schemes. In this section, we
highlight that they all fail to achieve generalizable fairness.
Online exploration schemes: Online exploration schemes
utilize a stateless online learning paradigm to explore the
optimal sending rate through trial and error [6–8, 27]. These
schemes employ an exploration algorithm that dynamically
adjusts the sending rate, observes the network feedback, and
then selects the subsequent action. For instance, solutions
like Allegro [6] and Vivace [7] incrementally increase or
decrease the sending rate in small intervals, and then choose
the direction that yields the best performance according
to a predefined utility function. In contrast, Libra [8] com-
pares the policies of a learning-based scheme and a classic
scheme to determine the optimal sending rate. However,

the exploratory process in these schemes generally requires
several round-trip times (RTTs) to complete a single send-
ing rate adjustment. This can lead to slow convergence on
network paths with large RTTs, as shown in Figure 7(f). Fur-
thermore, the slow response time of these online exploration
schemes can hinder their ability to quickly adapt to dynamic
bandwidth changes, as illustrated in Figure 12.
Hybrid control schemes: Another line of research at-
tempts to combine learning-based algorithms with classic
CC protocols, with the goal of leveraging the benefits of both
approaches. For example, Orca [1] adopts a hybrid design
that integrates both the Cubic and a DRL model to jointly
control the sending rate. The underlying premise is that the
hybrid scheme can benefit from the high performance of
the DRL learning process as well as the good convergence
properties of the Cubic protocol. However, the lack of a
well-designed integration between the learning-based and
classic components may lead to suboptimal performance
in practical network scenarios, especially ones that are un-
seen during the training. The RL part may undermine the
theoretical guarantees of fairness provided by Cubic, while
the Cubic part can inadvertently affect the performance of
the RL model by changing the sending rate according to its
own internal state. As demonstrated in [22] and shown in
Figure 7(h), Orca exhibits both unstable convergence and
poor performance under lossy network conditions.
Fairness-oriented learning schemes: More recently, re-
searchers have started to explore learning-based conges-
tion control schemes that explicitly focus on incorporating
fairness-related objectives into the learning process. The goal
is to teach the control model to behave fairly towards compet-
ing flows directly. For example, Astraea [22] leverages multi-
agent reinforcement learning techniques to incorporate the
interaction between multiple flows as part of the reward
signal during the learning process, incentivizing the agents
to optimize for good convergence properties across compet-
ing flows. While these fairness-oriented learning schemes
have demonstrated superior fairness within their trained op-
erational regions, they often exhibit degraded convergence
and performance when applied to unseen network environ-
ments, thereby limiting their practical deployment on the
open Internet. For example, Astraea, when trained on 100
Mbps network links, has been observed to show poor fairness
characteristics when applied to network conditions with sig-
nificantly higher bandwidth capacity, as shown in Figure 1.
Further online adaptation to new environments can hardly
mitigate the problem, as the decentralized nature of Internet
congestion control necessitates that DRL-based CC schemes
are updated locally without global information of other com-
peting flows, which hinders their ability to learn global fair-
ness behavior in real-world networks. Another possible solu-
tion is to cover network conditions exhaustively during the
training. However, as the real-world Internet exhibits various

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

complex behaviors due to various scheduling mechanisms,
traffic shaping, and interactions with different congestion
control protocols. The data/environment collection and train-
ing costs will become overwhelming. Furthermore, without
explicit theoretical foundations, it is hard to diagnose and
improve the policy generated by neural networks when they
fail to achieve fairness.

To solve the problem, we dived into the learning pipeline
of previous learning-based schemes.We found that their poor
fairness generalizability in unseen network environments
is primarily attributed to the difference of received network
signals in trained environments and unseen ones. For exam-
ple, when trained over 100 Mbps networks, the maximum
observed throughput 𝑡ℎ𝑟𝑚𝑎𝑥 feature observed by Astraea
may differ substantially for links with higher bandwidth
capacities. As a result, the flow agent’s behavior becomes
unpredictable in these new network conditions, causing the
well-learned fair policy to underperform or even fail.

Existing solutions have focused on normalizing the input
network signals from various environments into a common
feature space, in an attempt to reduce the input state diver-
gence. Following this idea, various normalization techniques
have been used in previous works [1, 17, 23, 40]. For instance,
Aurora [17] uses normalized states including latency gradi-
ent and the ratio of latency to the minimum latency, and
Orca [1] normalizes all throughput-related and delay-related
features with the maximum observed throughput and the
minimum observed one-way delay, respectively.
Following these techniques, we attempted to revise the

original Astraea scheme by removing throughput-related
features1 from its input feature set. However, when we re-
trained the model with this modification, the model could
hardly even learn to converge in training environments. Af-
ter further investigation, we determined that the root cause
was the lack of bandwidth-related input features. Attaining
fairness requires the model to make distinct adjustments in
sending rates among flows with different bandwidths. For
example, under the same delay and loss signals, flows occu-
pying larger bandwidth should behave more conservatively
and back off their bandwidth to allow smaller flows to receive
a fair share (this is also the core principle of AIMD). The
analysis in the original Astraea paper [22] also shows that to
achieve fairness, the Astraea flows are learned to respond to
delays differently based on their current throughputs. The
removal of the bandwidth-related features will impede the
model’s ability to differentiate the actions needed to reach a
fair equilibrium.
Conclusion: We observe an inherent conflict between
achieving fairness and ensuring its generalizability across
diverse network environments. This conflict stems from the
dilemma of whether to omit the bandwidth-related signals

1It includes the 𝑡ℎ𝑟𝑚𝑎𝑥 feature, the observed maximum throughput in the
flow’s history and the throughput ratio 𝑡ℎ𝑟

𝑡ℎ𝑟𝑚𝑎𝑥
.

that are essential for the model to learn effective fair band-
width allocation strategies.

2.3 Key Design Decisions

Inspired by the inherent conflict between fairness and gener-
alizability, our key design decision is to decouple the task of
ensuring fairness from the primary DRL model. We propose
a novel DRL pipeline where the preservation of fairness prop-
erties is inherently embedded, addressing the limitations of
prior approaches. Different from previous DRL-based CC
schemes that blindly pour all available signals into the neu-
ral network model and use it as an end-to-end solution, we
deliberately select input features for the DRL model to grant
its fairness generalizability. Furthermore, we hand-crafted
a preprocessing and postprocessing method for the model
pipeline to ensure its fairness properties. Our design features
two key components:
• We aim to design an RL decision-making process where
flows competing with the same bottleneck receive uniform
signal inputs and generate the same output, regardless of
their bandwidth utilization. To achieve this, Jury deliber-
ately removes bandwidth-related signals from the state
input and instead utilizes a set of observable network sig-
nals that only relate to the bottleneck status. The process
outputs a decision range, rather than a direct sending rate
adjustment. By doing so, flows competing with the same
bottleneck always receive uniform signal inputs and out-
put the same decision range, regardless of their individual
bandwidth utilization. This not only preserves fairness
generalizability, but also constructs a consensus point be-
tween competing flows as the basis for the subsequent
fairness-oriented component (§3.1).
• Jury adopts a post-processing phase to modulate the send-
ing rate changes between competing flows, ensuring fair-
ness. Specifically, based on the decision range generated by
the DRLmodel, this phase dynamically adjusts the sending
rate for each flow based on its current bandwidth utiliza-
tion. We first estimate the flow’s bandwidth utilization
(throughput/link capacity) using its historical sending rate
changes and throughput responses. Then, this bandwidth
utilization estimate is used to modulate the output sending
rate, such that larger flows get lower sending rates and
smaller flows get higher sending rates. In this way, the
phase differentiates the behavior of competing flows, mak-
ing large flows more conservative and smaller flows more
aggressive, thus promoting a fair and balanced allocation
(§3.2).
As a result, we can attain a balanced and fair distribution

among flows even with normalized input features, achieving
both fairness and its generalizability across network environ-
ments. The pre-processing and post-processing parts enable
the DRL-based model to achieve fairness without relying
on explicit bandwidth utilization features, effectively incor-
porating "classic CC wisdom" into the ML-based solution,

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

DNN

Signal
transformation Δ𝑅𝑇𝑇

Δ𝑙𝑜𝑠𝑠

Raw network
Statistics

Radius

Mean
𝜇
𝛿 𝜇𝛿

Δ𝑟𝑎𝑡𝑒
Δ𝑡ℎ𝑟 Post-

processing

Sending rate
adjustment

Estimating
ratio

Estimated bandwidth occupancy

Normalized
states

Figure 2. The DRL pipeline of Jury. Preprocessing feature transformation ensures the generalizability of the pipeline, and the
post-processing function ensures the fairness property.

allowing the DRL model to focus on optimizing the per-
formance goal (e.g., high bandwidth and low delay). Given
sufficient informed signals, the pipeline continues to exhibit
strong performance across both training and unseen test-
ing network conditions, as guaranteed by the normalization
technique and shown in the evaluation sections (§5).

3 Design

Based on the observation and design decisions, we design our
fairness-generalizable DRL-based CC algorithm, Jury. Fig. 2
overviews the pipeline of Jury. It consists of three blocks: i)
the signal transformation function; ii) a DRL model, and iii)
a post-processing function. During each time interval, a flow
acquires raw network statistics 𝑠𝑟𝑎𝑤 from the environment,
including throughput, latency, loss, and so on. These raw
signals are fed into Jury’s signal transformation function
to generate normalized observable states, which are then
bifurcated into two separate components.

For the DRL model’s input, we select latency and loss net-
work signals, as they describe the bottleneck congestion level
and are agnostic to flow bandwidth occupancy. This ensures
that the DNNmodels for all competing flows receive identical
input states and yield the same output actions, characterized
by a decision range with mean 𝜇 and radius 𝑟 . Also, all the
signals are normalized to ensure generalizable performance
across various network environments.
On the other path, bandwidth-related states (including

sending rate change and the corresponding throughput change)
are employed to gauge the flow’s bandwidth occupancy ratio.
This ratio informs the post-processing phase in determin-
ing a specific point within the (𝜇, 𝑟) range, which is then
converted into an action for multiplicative rate adjustment.
The pipeline works as if plugging in an adaptor into the

DRL model, normalizing the state input and then ’denor-
malizing’ the output to rescale the sending rate adjustment
according to the flow’s bandwidth usage. This allows distinct
rate adjustments for different bandwidth flows, leading to a
fair equilibrium point.

We describe the details of each component in the pipeline
of Jury in the following sections, including its signal trans-
formation (§3.1), action generation pipeline (§3.2), reward

Figure 3. The action-feedback signals of a Jury flow.

definition (§3.3), signal processing mechanism (§3.4) and the
RL training algorithm (§3.5).

3.1 Signals Transformation

It is non-trivial to locate normalized signals that encode
sufficient information for control decision-making. In this
section, we design Jury’s signal transformation block that
both provides rich network information for the optimal send-
ing rate control and preserve the fairness generalizability of
policies learned with them.

As shown in Fig. 3, Jury’s signals are based on an action-
feedback mechanism that actively detects the current flow
and queue status in the bottleneck. Specifically, Jury records
the enforced sending rate adjustments and the corresponding
packet statistics changes. For an action 𝑎𝑡−1 enforced at the
𝑡-th time interval that updates the sending rate from 𝑥𝑡−1
to 𝑥𝑡 , Jury tracks the outbound packets during this interval
and collects the following metrics based on their ACKs:
• The ratio of throughput change to the throughput in the
last time interval 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
, where 𝑡ℎ𝑟𝑡 is the average

throughput for packets sent at the 𝑡-th time interval.
• The difference in RTT of two adjacent time intervals𝑅𝑇𝑇𝑡−
𝑅𝑇𝑇𝑡−1, where 𝑅𝑇𝑇𝑡 is the average RTT for packets sent
at the 𝑡-th time interval.
• The ratio of (1-loss_rate) between the two time intervals

1−𝐿𝑡
1−𝐿𝑡−1 , where 𝐿𝑡 is the average loss rate for packets sent
at the 𝑡-th time interval.
• The multiplicative sending rate change 𝑎𝑡−1 = 𝑥𝑡

𝑥𝑡−1
.

We normalize throughput and loss with their previous
values, only using their multiplicative changes. For the RTT
signal, we use the reductive change, as the change in RTT

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

Figure 4. The packet statistics that change with increasing
sending rate depend on the queue status (all statistics are
scaled to [0,1] for visualization.).

inherently represents the ratio between the overall sending
rate and the link capacity:

Δ𝑅𝑇𝑇 = 𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1 = Δ𝑡 · Σ𝑖𝑥𝑖,𝑡 − 𝑐
𝑐

, (1)

where Σ𝑖𝑥𝑖,𝑡 is the overall sending rate of all flows at 𝑡-th
time interval, Δ𝑡 is the time interval range, and 𝑐 is the link
capacity. Given a constant time interval, ΔRTT represents
the imbalance between the overall sending rate and the avail-
able link capacity. This normalization approach ensures that
the collected metrics are insensitive to the specific network
environment. Models fed with these signals will focus on
learning the relative changes in the throughput, RTT, and
loss rates instead of their absolute values in any specific net-
work environment, allowing the learned policy to generalize
well across different network conditions.

Besides their generalizability, the above action-feedback
based signals probe sufficient information about the current
network environment to enable intelligent control. Here we
show how a flow can i) learn to optimize its throughput while
reducing latency through signals (𝑅𝑇𝑇𝑡−𝑅𝑇𝑇𝑡−1, 1−𝐿𝑡

1−𝐿𝑡−1), and
ii) estimate its bandwidth occupancy in multi-flow scenarios
using (𝑥𝑡

𝑥𝑡−1
,
𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
).

For the latency and loss difference signals 𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1
and 1−𝐿𝑡

1−𝐿𝑡−1 , Fig. 4 shows the growths of throughput, latency,
and loss rate with a single flow on a link (100Mbps, 30ms
RTT, 750KB buffer size) that keeps increasing its sending
rate. We note that different metrics exhibit heterogeneous be-
haviors across different stages of queue building: i) when the
link is under-utilized and the queue is empty, the throughput
increases with the sending rate while its RTT and loss rate
remain unchanged; ii) when packets start queuing in the
bottleneck, increasing the sending rate will not affect the
throughput anymore, and RTT starts to increase; iii) after
the queue is full, continuing to increase the sending rate
with not affect the RTT anymore, and packet loss starts to
increase. Therefore, through recognizing different respon-
sive behaviors of throughput, RTT and loss rate concerning
sending rate modifications, the flow agent senses the current
queue-building phase and is thus able to tune its sending
rate towards the optimal operating point. This optimal point

is the junction of the "empty queue" and "queuing" phases,
where the link is fully utilized with almost no queue.

We then elaborate how sending rate and throughput dif-
ference signals 𝑥𝑡

𝑥𝑡−1
and 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
help estimate flow’s bot-

tleneck bandwidth occupancy. Fig. 5 depicts how the flow’s
throughput changes at different bandwidth occupations, when
its sending rate is increased by 10% in a 2-flow link (100Mbps,
30ms RTT, 750KB buffer size). We observe that when the
flow occupies less share of the link capacity, increasing the
sending rate leads to a larger increase in throughput. Based
on this characteristic, we can estimate the bandwidth oc-
cupation ratio of flows based on the relations between its
sending rate changes and throughput changes through the
following congestion control modeling.
When multiple flows fully occupy the bandwidth of a

bottleneck, for a specific flow, the feedback of throughput
change corresponding to its sending rate change is related
to its existing share of the link bandwidth. For a specific
flow, its share of link bandwidth is related to the ratio of
its sending rate to the overall sending rate of all competing
flows:

𝑡ℎ𝑟𝑖,𝑡 =
𝑥𝑖,𝑡

Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑥𝑖,𝑡
· 𝑐. (2)

When increasing its sending rate via action 𝑥𝑖,𝑡+1 = 𝑎𝑖,𝑡 · 𝑥𝑖,𝑡 ,
the updated throughput should be

𝑡ℎ𝑟𝑖,𝑡+1 =
𝑎𝑖,𝑡 · 𝑥𝑖,𝑡

Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑎𝑖,𝑡 · 𝑥𝑖,𝑡
· 𝑐. (3)

Therefore,
𝑡ℎ𝑟𝑖,𝑡+1
𝑡ℎ𝑟𝑖,𝑡

=
𝑎𝑖,𝑡 (Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑥𝑖,𝑡)
Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑎𝑖,𝑡𝑥𝑖,𝑡

=
𝑎𝑖,𝑡

1 + (𝑎𝑖,𝑡 − 1) 𝑥𝑖,𝑡
Σ 𝑗𝑥 𝑗,𝑡

=
𝑎𝑖,𝑡

1 + (𝑎𝑖,𝑡 − 1) 𝑡ℎ𝑟𝑡𝑐

(4)

We can further get the flow bandwidth occupancy ratio
from the sending rate change and its corresponding through-
put change:

𝑟𝑎𝑡𝑖𝑜𝑏𝑤 =
𝑡ℎ𝑟𝑡

𝑐
=

𝑎𝑖,𝑡 − 𝑡ℎ𝑟𝑡+1
𝑡ℎ𝑟𝑡

𝑡ℎ𝑟𝑡+1
𝑡ℎ𝑟𝑡
· (𝑎𝑖,𝑡 − 1)

(5)

Here, 𝑡ℎ𝑟𝑡 denotes the flow throughput at t-th time inter-
val, 𝑐 denotes the link capacity of the bottleneck. This esti-
mation can be directly calculated from our action-feedback
signals2. With these bandwidth occupancy estimates, Jury
can recalibrate the aggressiveness of sending rate modifi-
cations among different competing flows to achieve a fair
equilibrium point.

3.2 Rate Adjustment Generation

Following the signal transformation process, the two parts
of the transformed signals are bifurcated into the DRL model
and its post-processing function, respectively. The latency
2BBR has also given similar analysis for its fairness property [39].

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 5. For a flow occupying different portions of the link
capacity, we observe its throughput change when increasing
its sending rate by 10%.

and loss differences (𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1 and 1−𝐿𝑡
1−𝐿𝑡−1) are used by

the neural network model. By relying only on RTT and loss
signals, the model ensures that all competing flows at the
bottleneck receive identical input states. This input unifor-
mity leads to consistent outputs from DRL models for all
flows competing at the same bottleneck. We deliberately
exclude the throughput and sending rate difference signals
from the input so that the model cannot infer the flow’s
throughput or bandwidth occupancy, preventing the learn-
ing policies from violating the fairness guarantee established
by the post-processing phase. The output from the neural
network model comprises a pair of values: the mean 𝜇 and
the radius 𝛿 , which delineate an action range.

Concurrently, the throughput and sending rate differences
(𝑥𝑡

𝑥𝑡−1
and 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
) are used to estimate the flow band-

width occupancy based on Equation 5, which is then used
in the post-processing phase to determine the precise rate
adjustments for different flows within the given action range
(𝜇𝑡 , 𝛿𝑡) as following:

𝑎𝑡 = 𝜇𝑡 + (1 − 2 · 𝑟𝑎𝑡𝑖𝑜𝑏𝑤) · 𝛿𝑡 (6)

This approach ensures that flows with a higher bandwidth
occupancy always produce smaller actions, leading to a grad-
ual relinquishment of bandwidth to lesser-occupying flows.
This process continues until a fair equilibrium in bandwidth
sharing is achieved, establishing the convergence guarantee
of Jury. Furthermore, the insensitivity to link characteristics
of Jury’s signals enables the fairness to generalize to flows
with heterogeneous base delays and random loss rates due
to their different network paths, as shown in §5.1.2.

Then, similar to previous DRL-based CC schemes [1, 17, 23,
40], Jury adjusts the congestion window and then calculates
a proportional pacing rate based on the output action. It
adopts a multiplicative sending rate adjustment. Specifically,
the action 𝑎𝑡 generated by the DRL model in Jury in each
time interval updates the congestion window as follows:

𝑐𝑤𝑛𝑑𝑡+1 =

{
𝑐𝑤𝑛𝑑𝑡 · (1 + 𝛼 · 𝑎𝑡) 𝑎𝑡 ≥ 0
𝑐𝑤𝑛𝑑𝑡/(1 − 𝛼 · 𝑎𝑡) 𝑎𝑡 < 0

, (7)

where 𝛼 is a hyperparameter that controls the policy ag-
gressiveness. Then, we calculate the pacing rate based on the
updated congestion window and the average RTT observed
in the last interval:

𝑥𝑡+1 =
𝑐𝑤𝑛𝑑𝑡+1
𝑅𝑇𝑇𝑡

. (8)

3.3 Reward

The reward function is pivotal in defining the learning ob-
jective for the flow agent’s control policy. Jury’s reward
function employs local signals to enable further policy adap-
tation. Inspired by Vivace’s utility framework [7], the reward
function for Jury is formulated as follows:

𝑅 = (𝑟𝑎𝑡𝑖𝑜𝑏𝑤)𝜁−𝑟𝑎𝑡𝑖𝑜𝑏𝑤 ·(𝛽1 ·(𝑅𝑇𝑇−𝑅𝑇𝑇𝑚𝑖𝑛)−𝛽2 ·
1 − 𝐿𝑡
1 − 𝐿𝑚𝑖𝑛

),
(9)

where 0 < 𝜁 < 1. The reward definition focuses on increasing
the flow bandwidth occupancy while decreasing incurred
latency and packet loss. The terms 𝑅𝑇𝑇𝑚𝑖𝑛 and 𝐿𝑚𝑖𝑛 denote
the observed minimum RTT and loss rate, respectively. It is
plain that both (𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛) and 1−𝐿𝑡

1−𝐿𝑚𝑖𝑛
can be derived

from the flows’s signal history. The coefficients 𝛽1 and 𝛽2
represent the weight of latency and packet loss. We have
tuned the weights (Table 2) for the learned policy to achieve
a good balance among various criteria (throughput, delay,
and loss), as shown in the evaluation section. For a specific
CC objective with new preferences, Jury would need to
be retrained. MOCC [23] provides a multi-objective DRL-
based CC framework that can adapt to different preferences
simultaneously without retraining, which can be adopted
in our method to fit networking applications with various
requirements.
Echoing the action generation process, the reward struc-

ture is also designed to incentivize smaller flows to increase
their throughput more aggressively than larger flows. The
reason is twofold: first, the concave throughput term (𝑟𝑎𝑡𝑖𝑜𝑏𝑤)𝜁
ensures higher rewards for small flows when increasing their
throughput compared to larger flows. Second, as the through-
put ratio also influences the penalty terms, smaller flows
incur lesser penalties due to latency inflation and packet loss,
recognizing that they have a limited impact on queue length
and thus bear less responsibility for congestion. According
to Vivace [7], such a concave utility function ensures the con-
vergence of its online learning process to a fair equilibrium.
While Jury’s fairness property is primarily upheld by the
post-processing phase, we find that the usage of the reward
function in Equation 9 practically stabilizes Jury’s learning
process.

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

3.4 Signal/Action Processing

To improve the robustness of Jury, we incorporate several
preprocessing/post-processing techniques on top of the DRL
scheme to keep empirical signals and responses aligned with
our generalization component.
Signal Averaging and Filtering As illustrated in Figure 5,
even with consistent sending rate alterations, network signal
changes vary due to network jitters. To mitigate the issue,
Jury employs a moving average filter to smooth the estima-
tion. Furthermore, we establish upper and lower bounds for
these signals to filter outliers. Samples that fall outside these
boundaries are adjusted to the corresponding threshold val-
ues. We also observe that the noise will not severely affect
the DRL-CC pipeline performance. The reason may be due
to the incremental process of the sending rate adjustment in
congestion control, where the output sending rate changes
modulated by the noisy estimation will also be averaged over
time.
Exploration Action We adopt specific rules for output
actions to meet innate exploration requirements from action-
feedback signals.We encourage the agent to increase/decrease
the sending rate to probe the current network condition.
Specifically, if the output action 𝑎𝑡 is near 0 (𝑒𝑙𝑜𝑤𝑒𝑟 < 𝑎𝑡 <

𝑒𝑢𝑝𝑝𝑒𝑟), we assign a high likelihood to modify the action to
either 1 or -1 (with the same probability, so the expectation
remains unchanged). This adjustment compels the flow to
either maximally boost or reduce the sending rate so it can
investigate more obvious responses tied to deliberate fluc-
tuations in sending rates, enabling more informed policy
decision-making for the RL model.
Enhance Statistics Significance To collect consistent and
robust statistical signals, Jury just keeps maximally increas-
ing the sending rate when packets inside one interval are less
than the pre-defined threshold, ensuring sufficient samples
to generate statistically significant signals and thus, inform
a reliable decision-making process. Additionally, this mech-
anism can also i) work as a slow-start phase and ii) allow
short flows to circumvent the DRL inference overhead.

3.5 Training

For the training algorithm, Jury adopts Deep Deterministic
Policy Gradient (DDPG), a prevalent model-free, off-policy
DRL algorithm used in previous DRL-based CC schemes [1,
23, 40]. Jury utilizes the actor-critic framework to train the
agent’s policy, which involves both a critic model that es-
timates the expected cumulative rewards (the action-value
function 𝑄𝜋𝜃 (𝑠, 𝑎) = E[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 | 𝑎, 𝑠]) and an actor model

that decides the actions.
During training, the actor interacts with the network envi-

ronment, gathering trajectories composed of tuples (𝑠𝑡 , 𝑎, 𝑟, 𝑠𝑡+1).
After each run of trace, we perform an update operation. For

Bandwidth Base RTT Buffer size Loss rate
20-100 Mbps 10-60ms 0.8-1.5 BDP 0-0.1%
Table 1. DRL-based methods training environment.

every update step, we sample tuples from the collected train-
ing data in batches and update the actor and critic models.
Jury updates the actor’s policy 𝜋𝜃 by minimizing the follow-
ing objective function:

J (𝜃) = E [𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠))] , (10)
where 𝑄𝜔 (𝑠, 𝑎) is the output of the critic that estimates

the action-value function 𝑄𝜋𝜃 (𝑠, 𝑎) under the current policy.
This estimation guides the actor in selecting actions that lead
to higher rewards. On the other hand, the critic is trained
to improve its value estimation by estimating the difference
between subsequent states. It minimizes the following ob-
jective function:

L (𝜔) = E𝑠,𝑎,𝑟,𝑠′

[(
𝑄𝜔 (𝑠, 𝑎) − 𝑟 + 𝛾𝑄𝜔 (𝑠′, 𝑎′) |𝑎′=𝝅𝜽 (𝑠′)

)2]
.

(11)
After calculating the gradients, Jury updates the actor and

critic models with learning rates 𝜎 and 𝜂, respectively:

𝜃 ← 𝜃 + 𝜎∇𝜃J (𝜃) , 𝜔 ← 𝜔 − 𝜂∇𝜔L (𝜔) . (12)
Similar to previous methods, we stack signals from a win-

dow of intervals as the input state of the model to enrich the
input information. We also adopt several RL-related training
techniques used in Twin Delayed Deep Deterministic Policy
Gradient (TD3) [13], including clipped double Q-learning,
delayed policy updates, and target policy smoothing regu-
larization. These techniques help reduce the variance of the
critic model’s value estimation.

4 Implementation

We implement a fully functional Jury prototype in Linux. It
consists of the CC kernel module in the Linux TCP network
stack and the RL agent in the userspace. The kernel CC mod-
ule collects the network signals and sends them to the RL
agent in the userspace, which then returns the control action
to the kernel. The kernel module uses the action to change
the congestionwindow and pacing rate. The cross-space com-
munication channel is implemented with netlink [36]. For
the DRLmodel design and training, we use the RL framework
DI-engine [10] based on PyTorch [33] that provides support
for various deep reinforcement learning algorithms as well
as the capability to design custom policies. For the inference
part, we implement the inference service entirely in C++ us-
ing the high-performance PyTorch C++API. This approach is
more lightweight than previous learning-based implementa-
tions, such as Orca [1], and avoids the need for cross-process
communication between a C++ client and a Python-based

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Name Value
control time interval 30 ms
actor learning rate (𝜎) 5e-4
critic learning rate (𝜂) 1e-3
discount factor (𝛾) 0.98
batch size 64
model update interval (second) 5
action control coefficient (𝛼) 0.025
RTT scale coefficient (𝛽1) 1e-5
loss scale coefficient (𝛽2) 5

Table 2. Training hyperparameters in Jury.

inference service. For the neural network models, we adopt
a model structure with two 128-dimensional fully connected
layers. We train Jury on emulated network environments
implemented with Mahimahi [31] and Pantheon-tunnel [44]
supporting customized link capacity, base delay, and random
loss.
We use a distributed training setup with 8 parallel pro-

cesses (actors) to collect the training experience, and a single
process (critic) to update the model with the collected data
every 5 seconds. This allows us to efficiently gather diverse
training data while keeping the model update process cen-
tralized.
We train and evaluate Jury on a Linux server with 80

CPU cores, 256 GB of RAM, and an NVIDIA GeForce RTX
3090 GPU. We leverage the GPU for neural network model
updates during the training phase, but use only the CPU for
inference, making the policy deployment more feasible on
common end-host devices. The training process converges
within 4 hours. We have carefully chosen and tuned all the
training hyperparameters to stabilize the learning process
of Jury, and we list their values in Table 2.

5 Evaluation

In this section, we evaluate Jury with emulations and real
testbed experiments to validate its fairness generalizability
and consistent high performance across various network
conditions. We demonstrate Jury’s convergence generaliz-
ability in §5.1 and performance in §5.2. We compare Jury
with several baselines, including recently proposed learning-
based CC schemes (Astraea [22], Orca [1], Aurora [17], Vi-
vace [7]) and classical heuristics-based CC schemes (Cu-
bic [14], BBR [4], Vegas [3]).

To avoid the influence of the range of the training environ-
ment, we retrain all learning-based schemes with the same
training environment region as shown in Table 1. Through-
out the training phase of these DRL-based schemes, we also
simulate a varying number of homogeneous and Cubic con-
current flows (ranging from 2 to 10) into the environment to
facilitate the learning of robust convergence properties.

0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ja
in

 In
di

ce
s

Jury Astraea Orca Aurora Vivace BBR Cubic Vegas

Figure 6. The average Jain Index of homogeneous competing
flows with 5th and 95th percentiles.

5.1 Generalizable Fairness

In this section, we evaluate Jury’s fairness generalizability
in terms of intra-protocol fairness, RTT-fairness, fairness
under multi-bottleneck scenario, and friendliness.

5.1.1 Fairness among Jury Flows. To evaluate the gen-
eralizability of Jury’s fairness in different conditions, we
set up experiments with three homogeneous flows, each
running for 180 seconds and starting 60 seconds apart. We
conduct 60 repetitions of this experiment on emulated links,
representing a range of network conditions with bandwidths
from 20Mbps to 400Mbps, base one-way delays from 10ms
to 75ms, and loss rates up to 0.3%. The Jain’s Fairness Index,
along with the 5th and 95th percentiles, is presented in Fig. 6.
The optimal Jain’s index is 1, which indicates perfect fair-
ness where all flows have equal bandwidth immediately and
stay constant. We observe that Jury achieves the highest
average Jain Index (0.94) among the baselines with also the
highest 5th percentile (0.82). This performance underscores
Jury’s robust fairness across diverse network environments,
confirming that our design achieves generalizable fairness
across various network environments.
Fig. 7 further demonstrates the throughput dynamics of

competing flows under various network conditions. As ob-
served in Fig. 7(a), 7(b), 7(c), and 7(d), Jury displays consistent
fairness behaviors across different link capacities, delays, and
loss rates. Its convergence speed is a little slower in large
BDP links due to limited rate adjustments per interval and
delayed feedback in high RTT scenarios. In contrast, existing
learning-based schemes show poor fairness in specific condi-
tions. Astraea, for instance, struggles with fairness outside its
training region (Fig. 7(e)), as it lacks of a guaranteed fairness
learning process. Vivace and BBR exhibit slow convergence
in scenarios with large RTTs and packet loss (Fig. 7(f), 7(g)),
as it requires several RTTs to adapt to network changes.
Orca, despite demonstrating good fairness in various con-
ditions (average Jain Index=0.91), faces challenges on lossy
links where its underlying Cubic scheme also underperforms,
leading to both reduced link utilization and poor fairness
(Fig. 7(h)). The main reason for Orca’s limitation is due to its

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

unscrutinized interleaving of the DRL control and the classic
Cubic control. Specifically, the RL part may undermine the
theoretical guarantees of fairness provided by Cubic, while
the Cubic part can affect the performance of the RL model
by changing the sending rate according to its own internal
state.

5.1.2 RTT-Fairness. A notable aspect of Jury is its RTT-
fairness, characterized by the independence of its conver-
gence property from the actual RTTs of competing flows. To
empirically investigate this, we establish a 100Mbps link and
sequentially introduce five Jury flows with progressively in-
creasing base RTTs (70ms, 110ms, 150ms, 190ms, and 210ms).
Each flow is launched at 60-second intervals and ran for 300
seconds. The throughput and RTT dynamics of these flows
are depicted in Fig. 8. Our observations reveal that Jury flows,
despite having varied RTTs, almost equally share the band-
width, demonstrating negligible latency inflation. The reason
is that Jury’s bandwidth occupancy ratio estimation based
on action-feedback signals is independent of network RTT.
Consequently, Jury exhibits a convergence behavior that is
adaptable to heterogeneous RTT scenarios. This adaptability
ensures equal bandwidth sharing among flows originating
from different network paths, further underscoring the ro-
bustness of Jury in diverse network conditions.

5.1.3 Large number of flows. In this section, we explore
the scalability of Jury’s fairness across large numbers of
flows with varying running times and RTTs. We consider
two common scenarios in the Internet: (i) flows with diverse
running times, and (ii) flows with heterogeneous RTTs. For
(i), we initialize a fixed number (4) of long-running flows
that persist throughout the trial, along with a large number
of short flows that arrive and depart frequently. The short
flows follow an exponential distribution with 𝜆 = 4, and
their running times are drawn from a Gaussian distribution
N(4, 12). For (ii), we set up 20 competing flows, where half
have a base RTT of 30ms and the other half have a base RTT
of 90ms. We run each trace for 100 seconds and repeat the
experiment 20 times. The average throughput and latency
for both types of flows, as well as the overall throughput,
are reported in Table 3. We find that Jury achieves similar
throughput for heterogeneous flows in terms of RTT and run-
ning time, demonstrating its scalability and robust fairness
across flows with diverse characteristics.

5.1.4 Friendliness. In this section, we further investigate
the TCP friendliness of Jury, showing how Jury competes
with flows with different CC policy (Cubic) and flow sizes.
We set up a 100Mbps link with 30ms RTT and a buffer size
of one BDP. In this experiment, a Jury flow and a Cubic flow
are run concurrently for 120 seconds, and their throughput
ratio is recorded. This test is repeated under various RTTs,
with the results illustrated in Fig. 9. A ratio of 1 indicates
ideal friendliness. Our observations show that while Jury

attains higher throughput ratios compared to other learning-
based schemes such as Aurora, Astraea, Orca, and Vivace,
it remains more conservative than Cubic. Despite the good
results, we note that Jury can only guarantee the conver-
gence property across homogeneous flows with same CC
algorithm, and there is no guarantee that the learned friend-
liness can be generalized to other network conditions. In
fact, whether we need the generalizability of friendliness is
an open question, as Cubic’s link utilization explicitly de-
grades in lossy link. In this case, Jury will also deliver poor
performance if we strictly follow the friendliness principle.

5.2 Consistent Performance

We further show Jury’s performance generalizability by
demonstrating its consistent high performance across a wide
range of network environments through emulated experi-
ments and real-world evaluations. We focus on improving
the performance metrics (throughput, delay, and loss) of indi-
vidual flows. While fairness is embedded in Jury through its
pre- and post-processing pipelines, this design choice may
limit the performance in certain scenarios where fairness
considerations could affect the performance. For instance,
larger flowsmay benefit from higher sending rates to achieve
good performance, as seen in co-flow scheduling [?].

5.2.1 Extensive Emulations. To evaluate Jury’s perfor-
mance across various network environments, we set up a
dumbbell topology with a single flow and varied link charac-
teristics including link capacity, base delay, random loss rate,
and queue buffer size. Subsequently, we individually alter
each link characteristic, keeping others constant, to evaluate
Jury and baseline systems. The parameters range from 10 to
600Mbps for bandwidth, 15 to 120ms for base delay, 0% to
1.5% for loss rate, and 0.2× to 16× BDP for buffer size.

The average results from 10 tests are displayed in Fig. 10
and the variances are within ±5%. For clarity, we exclude i)
the latency results of Cubic in Fig. 10(f) and Fig. 10(h) as they
are too large (>200ms) compared to other schemes, and ii)
the link utilization results of Vegas in Fig. 10(a) as it is much
lower when the link capacity is large (<0.3). We observe that,
Jury, trained in a small region, consistently exhibits high link
utilization and low latency inflation across all scenarios. We
attribute Jury’s consistent high performance to the invari-
ance of input signals ensured by the signal transformation
block, enabling performance transfer to unseen network con-
ditions. In links with higher delays in Fig. 10(f), Jury exhibits
small latency inflation (from 3.5ms to 7.2ms when increasing
the one-way base delay from 15ms to 120ms), due to delayed
network feedback.
Contrastingly, DRL-based schemes like Aurora, Astraea

and Orca, trained on a small training region demonstrate
performance degradation when tested network environment
configurations deviate from their training regions. For ex-
ample, Aurora and Orca suffer from link under-utilization

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Jury

Th
ro

ug
hp

ut
 (M

bp
s)

0

20

40

Time (s)
0 50 100 150 200 250 300

(a) 50Mbps, 30ms RTT, 0% loss.

Jury

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

400

Time (s)
0 50 100 150 200 250 300

(b) 350Mbps, 30ms RTT, 0% loss.

Jury

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

400

Time (s)
0 50 100 150 200 250 300

(c) 350Mbps, 150ms RTT, 0% loss.

Jury

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

Time (s)
0 50 100 150 200 250 300

(d) 350Mbps, 150ms RTT, 0.2% loss.

Astraea

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

400

Time (s)
0 50 100 150 200 250 300

(e) 350Mbps, 30ms RTT, 0% loss.

Vivace
Th

ro
ug

hp
ut

 (M
bp

s)

0

100

200

300

400

Time (s)
0 50 100 150 200 250 300

(f) 350Mbps, 150ms RTT, 0% loss.

BBR

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

400

Time (s)
0 50 100 150 200 250 300

(g) 350Mbps, 150ms RTT, 0.2% loss.

Orca

Th
ro

ug
hp

ut
 (M

bp
s)

0

100

200

300

Time (s)
0 50 100 150 200 250 300

(h) 350Mbps, 150ms RTT, 0.2% loss.

Figure 7. Jury generalizes its fairness to network environments with different bandwidths, RTTs, and loss rates
(Fig. 7(a),7(b),7(c),7(d)). On the contrary, previous learning-based or heuristic-based schemes fail to converge or converge
slowly in some specific network conditions (Fig. 7(e),7(f),7(g),7(h)).

Th
ro

ug
hp

ut
 (M

bp
s)

0

50

100

Time (s)
0 100 200 300 400 500

(a) Throughput

RT
T

(m
s)

50

100

150

200

250

Time (s)
0 100 200 300 400 500

(b) RTT

Figure 8. The throughput and RTT dynamics of multiple Jury flows with
different RTTs.

Flows Jury
Thr. (Mbps) Delay ratio

Overall 192.3 1.64
Per Long flow 11.4 1.72
Per Short flow 10.9 1.88

Overall 191.7 /
Per small-RTT flow 10.3 1.72
Per large-RTT flow 11.1 1.27

Table 3. Long-short and heterogeneous RTT
experiments.

Aurora
Orca
Vivace

BBR
Vegas
Astraea

Jury

Av
g.

 T
hr

ou
gh

pu
t R

at
io

0.01

0.1

1

10

Base RTT (ms)
50 100 150 200 250 300

Figure 9. The throughput ratios of CC schemes to Cubic
under varying RTTs.

when the link capacity is larger than 300Mbps (Fig. 10(a).
Astraea shows severe latency inflation when the link band-
width is large (Fig. 10(e)) and under-utilization when the
link is lossy (Fig. 10(c)). Besides, Aurora shows proportional
latency inflation with the increase of delay and loss rate,
and Orca’s link utilization dramatically drops (<20%) when
the base delay of the evaluated scenario exceeds its training
range (Fig. 10(f) and Fig. 10(g)). Their poor generalizability

stems from input state and transition divergences under dif-
ferent network conditions. Additionally, Orca’s reliance on
Cubic leads to under-utilization when the random loss rate
is large (Fig. 10(c)), as Cubic cannot differentiate between
congestion and non-congestion loss.

5.2.2 Jury on Challenging Conditions. We extend our
evaluation of Jury to more challenging network conditions:
i) satellite links with large RTT; ii) high-speed links; and iii)
LTE networks with rapidly fluctuating bandwidth.
In satellite communication, long RTT and random loss

significantly impact classical CC schemes. We test Jury on a
simulated satellite link, following the setup from [7] with 42
Mbps bandwidth, 800ms RTT, and a 0.74% random loss rate.
The results, averaged from 10 trials and shown in Fig. 11(a),
reveal that Jury achieves over 75% link capacity and less than
5% latency inflation of the base one-way delay (18.2ms/400ms).
This performance is attributed to its resilience to both high
base delay and random loss. In contrast, Aurora, Astraea and
Orca experience significant latency inflation or link under-
utilization, aligning with the results in §5.2.1. Vivace incurs
high latency inflation in satellite links. The reason is that

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

Li
nk

 u
til

iz
at

io
n

0.75

0.80

0.85

0.90

0.95

1.00

Bandwidth (Mbps)
100 200 300 400 500 600

(a) Varying bandwidth.
Li

nk
 u

til
iz

at
io

n

0

0.2

0.4

0.6

0.8

1.0

One-way base delay (ms)
20 40 60 80 100 120

(b) Varying latency.

Li
nk

 u
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1.0

Loss ratio
0 0.005 0.010

(c) Varying random loss.

Li
nk

 u
til

iz
at

io
n

0.75

0.80

0.85

0.90

0.95

BDP
0.2 0.5 1.0 2.0 4.0 8.0 16.0

(d) Varying buffer size.

Q
ue

ui
ng

 d
el

ay
 (m

s)

0

5

10

15

20

25

30

Bandwidth (Mbps)
100 200 300 400 500 600

(e) Varying bandwidth.

Q
ue

ui
ng

 d
el

ay
 (m

s)

0

10

20

30

40

50

One-way base delay (ms)
20 40 60 80 100 120

(f) Varying latency.

Q
ue

ui
ng

 d
el

ay
 (m

s)

0

5

10

15

20

25

Loss ratio
0 0.005 0.010

(g) Varying random loss.

Q
ue

ui
ng

 d
el

ay
 (m

s)

0

10

20

30

BDP
0.2 0.5 1.0 2.0 4.0 8.0 16.0

(h) Varying buffer size.

Figure 10. The performance of Jury and baselines in terms of link utilization and queuing delay under various bandwidths,
base delays, loss rates, and bottleneck buffer sizes.

1.01.21.41.6
Avg. Normalized One-Way Delay

0

5

10

15

20

25

30

35

Av
g.

 T
hr

ou
gh

pu
t (

M
bi

t/s
)

Aurora

BBR

Cubic

Jury

Orca Vegas

Vivace

Astraea

(a) Satellite network.

1.01.21.41.61.82.0
Avg. Normalized One-Way Delay

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Av
g.

 T
hr

ou
gh

pu
t (

Gb
it/

s)

BBR
Cubic Jury

VegasVivace

Astraea

(b) High-speed network.

Figure 11. Jury in various network conditions.

capacity
Orca

Aurora
Vivace

Jury
Astraea

Se
nd

in
g

Ra
te

 (M
bp

s)

0

5

10

15

Time (s)
0 10 20 30 40 50 60

Figure 12. The responsiveness in LTE networks.

before achieving the stable equilibrium operating point, Vi-
vace’s RTT-based control frequency incurs large latency and
packet loss during its slow convergence progress when the
RTT is much higher. For high-speed networks, we set up
a 10 Gbps connection with 15ms latency in our testbed to
mimic real-world WAN conditions. Fig. 11(b) displays the
throughput and latency for Jury and benchmarks. We ob-
serve that Jury demonstrates link utilization comparable to
BBR, but with lower latency, showcasing its strong adaptabil-
ity to high-speed networks which are far beyond its training
bandwidths.
Similar with [22], We also assess Jury’s responsiveness

in an LTE network environment [43] by emulating realistic
cellular network traces with fluctuating bandwidth. Fig. 12
shows that Jury, with a 15ms base one-way delay and ade-
quate buffering, responds excellently to the dynamic band-
width changes, outperforming previous learning-based mod-
els. On the other hand, Aurora, while managing acceptable

link utilization under lower bandwidth scenarios (Fig. 10(a)),
struggled in the LTE link where bandwidth fell outside its
training scope (approximately 5 Mbps). Additionally, Vivace
could hardly react to the dynamic changing bandwidth due
to its slow convergence speed. Jury’s good responsiveness is
due to the effective balance between exploration and exploita-
tion in its interval-based rate adjustment, learned adaptively
through DRL.

5.2.3 Real-world Experiments. We conduct real-world
experiments to assess Jury’s performance on the wild Inter-
net, using the AWS platform with c5a.4xlarge instances in
Seoul, Tokyo, and London. The sender is located in Seoul,
while the receivers are alternated between Tokyo and Lon-
don, allowing us to evaluate Jury in both intra- and inter-
continental environments. We run each CC algorithm for
60 seconds in each test, and repeat the test 10 times. The
average results are displayed in Fig. 13.

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1.52.02.5
Avg. Normalized One-Way Delay

200

400

600

800

1000

1200

1400

Av
g.

 T
hr

ou
gh

pu
t (

M
bi

t/s
)

Aurora
BBR
Cubic
Jury

Orca
Vegas
Vivace
Astraea

(a) Intra-Continental Experiments

1.0251.0501.0751.100
Avg. Normalized One-Way Delay

200

400

600

800

1000

1200

Av
g.

 T
hr

ou
gh

pu
t (

M
bi

t/s
)

Aurora
BBR
Cubic
Jury

Orca
Vegas
Vivace
Astraea

(b) Inter-Continental Experiments

Figure 13. Throughput and one-way delay in real-world
testbed.

Our observations indicate that Jury achieves high link
utilization and maintains low latency inflation across both
intra-continental and inter-continental links, forming a new
Pareto frontier among the baselines. Notably, Jury delivers
higher throughput and lower latency than Cubic in both sce-
narios. The fact that Jury excels in real-world Internet con-
ditions, despite being trained on a small region of network
environments, underscores its theoretical generalizability.
In contrast, as previously discussed in §2, Aurora exhibits
higher latency inflation, and Orca struggles with large BDP
links in the inter-continental experiments, highlighting their
generalizability issues. BBR achieves higher throughput at
the cost of latency inflation due to i) its aggressiveness policy
and ii) explicit modeling policers on the Internet, which is
out of the scope of this paper.

5.3 Overhead

CPU utilization. We evaluate the computational overhead
of Jury and other CC baselines by measuring their CPU
utilization during a flow’s transmission. Specifically, we em-
ulate a link with 100 Mbps bandwidth, 30 ms RTT, and a
buffer size of 1 bandwidth-delay product (BDP). We config-
ure Jury to infer the new sending rate every 20 ms, aligning
with the update frequency of the previous DRL-based al-
gorithm Orca [1]. For each CC algorithm, we run the flow
transmission for 120 seconds and record the CPU utiliza-
tion of the transmission process. During the transmission,
Jury takes an average of 4.5 ms for each model invocation.
This low latency for the inference process is crucial for the
real-time performance of the congestion control algorithm.
Choosing a time interval smaller than it may lead to system
failure.

The CPU utilization results are then averaged and shown
in Figure 14. The results indicate that Jury achieves lower
computation overhead than Orca due to its efficient C++
implementation. We further observe there is almost no dif-
ference between the overhead results for Jury with or with-
out the post-processing function, as the computation cost
of the post-processing is much lower compared to the DRL

131.4 123.6
98.2 97.1

13.5 1.3 0.9 0.7 10.2
AuroraVivace Copa Remy Orca Cubic BBR Vegas JuryAv

g.
 C

PU
 U

til
. (

%
)

0

50

100

150

Figure 14. Average CPU utilization of Jury and CC base-
lines.

component. To further reduce the computation overhead of
DRL-based CC algorithms, we can either reduce the infer-
ence frequency [40] or implement the neural network model
in the kernel mode [46], which is out of the scope of this
paper.

6 Related Work

Congestion Control The congestion control task has been
a persistent hotspot in networking research for more than
three decades. The traditional schemes [2, 3, 12, 14, 16] are
frequently referred to as heuristic-based schemes since they
are typically handcrafted based on specific assumptions of
the network condition. For instance, loss-based protocols [14,
16] adopt packet loss as the congestion signal and respond
to it by reducing the congestion window.
Recently, a plethora of learning-based schemes has been

proposed to learn control policy based on data instead of
using predetermined rules [1, 6, 7, 17, 23, 35, 40, 42, 44]. For
example, PCC Allegro [6], Vivace [7], and Libra [8] utilize
a stateless online learning paradigm to explore the best ac-
tion through trial and error. Aurora [17] proposes to adopt
vanilla deep reinforcement learning on congestion control
to adjust the 𝑐𝑤𝑛𝑑 , which raises several challenges such as
fairness and overhead issues. Orca [1] proposes to resolve
these challenges by combining classic CC schemes (e.g., Cu-
bic) with DRL-based model. Astraea [22] introduces a global
fairness metric into its multi-agent reinforcement learning
framework to improve convergence properties.We have thor-
oughly compared Jury with these prior schemes in terms of
fairness generalizability in both the motivation and evalua-
tion sections. We refer readers to [18] for a comprehensive
survey of learning-based CC schemes.
RL Generalization Having achieved superior performance
on benchmarks such as Atari [30] and MuJoCo [41] that con-
sist of a single environment for both training and evaluation,
the RL community has started to focus on understanding,
measuring, and improving generalizability in DRL [5, 19, 24,
32, 34, 38]. Among them are works proposing new architec-
tures or training paradigms to improve DRL generalizability.
For example, [34] adopts an automatic data augmentation
technique to improve the sample complexity and RL general-
izability. [38] introduces training environment diversity by

EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Han et al.

inviting multiple agents into the environment so that the RL
agent can learn a policy with better generality. [20] gives a
detailed survey of RL generalization problems and solutions.
However, there is no general generalizability guarantee

of an RL model [19], as the difference between the training
and test environments is task-related. Hence, to improve
the generalizability of a DRL-based CC scheme, a domain-
specific analysis is demanded, which is the focus of our work.

7 Conclusion

In this paper, we presented Jury, a DRL-based CC algorithm
that achieves fairness generalizability across various network
environments while maintaining high performance. Jury
establishes robust fairness generalizability theoretically and
practically. Extensive evaluations demonstrate consistent
fairness and performance in both emulated and real-world
Internet settings. The convergence analysis and innovative
decoupling technique presented in this paper, we believe, will
shed light on the design of future learning-based algorithms
in various networking and system applications that demand
specific properties.

Acknowledgments

We thank the anonymous reviewers and our shepherd Zsolt
István for their constructive comments. This work is sup-
ported in part by the Hong Kong RGC TRS T41-603/20R,
GRF 16213621, NSFC 62062005, 62402407. Kai Chen is the
corresponding author.

References

[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic
meets modern: a pragmatic learning-based congestion control for the
internet. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 632–647.

[2] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based
congestion control for the internet. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). 329–342.

[3] Lawrence S Brakmo, SeanWO’Malley, and Larry L Peterson. 1994. TCP
Vegas: New techniques for congestion detection and avoidance. Number 4.
ACM.

[4] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-based conges-
tion control. Queue 14, 5 (2016), 20–53.

[5] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schul-
man. 2019. Quantifying generalization in reinforcement learning. In
International Conference on Machine Learning. PMLR, 1282–1289.

[6] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. 2015. PCC: Re-architecting Congestion Control for Con-
sistent High Performance. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). 395–408.

[7] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-
Learning Congestion Control. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). USENIX Associ-
ation, Renton, WA, 343–356.

[8] Zhuoxuan Du, Jiaqi Zheng, Hebin Yu, Lingtao Kong, and Guihai Chen.
2021. A unified congestion control framework for diverse applica-
tion preferences and network conditions. In Proceedings of the 17th

International Conference on emerging Networking EXperiments and
Technologies. 282–296.

[9] Salma Emara, Fei Wang, Baochun Li, and Timothy Zeyl. 2022. Pareto:
Fair congestion control with online reinforcement learning. IEEE
Transactions on Network Science and Engineering 9, 5 (2022), 3731–
3748.

[10] DI engine Contributors. 2021. DI-engine: OpenDILab Decision Intelli-
gence Engine. https://github.com/opendilab/DI-engine. (2021).

[11] Eyal Even-Dar, Yishay Mansour, and Uri Nadav. 2009. On the conver-
gence of regret minimization dynamics in concave games. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing.
523–532.

[12] Sally Floyd, Tom Henderson, Andrei Gurtov, et al. 1999. The NewReno
modification to TCP’s fast recovery algorithm. (1999).

[13] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing
function approximation error in actor-critic methods. In International
Conference on Machine Learning. PMLR, 1587–1596.

[14] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 5 (2008), 64–74.

[15] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S Gunawi. 2020. {LinnOS}: Predictabil-
ity on Unpredictable Flash Storage with a Light Neural Network. In
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20). 173–190.

[16] Van Jacobson. 1988. Congestion avoidance and control. ACM SIG-
COMM computer communication review 18, 4 (1988), 314–329.

[17] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on
Internet Congestion Control. In International Conference on Machine
Learning ICML. 3050–3059.

[18] Huiling Jiang, Qing Li, Yong Jiang, Gengbiao Shen, Richard Sinnott,
Chen Tian, and Mingwei Xu. 2021. When machine learning meets
congestion control: A survey and comparison. Computer Networks 192
(2021), 108033.

[19] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel.
2021. A survey of generalisation in deep reinforcement learning. arXiv
preprint arXiv:2111.09794 (2021).

[20] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel.
2021. A survey of generalisation in deep reinforcement learning. arXiv
preprint arXiv:2111.09794 (2021).

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
nature 521, 7553 (2015), 436–444.

[22] Xudong Liao, Han Tian, Chaoliang Zeng, Xinchen Wan, and Kai Chen.
2024. Astraea: Towards Fair and Efficient Learning-based Conges-
tion Control. In Proceedings of the Nineteenth European Conference on
Computer Systems. 99–114.

[23] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai
Chen, and Xin Jin. 2022. Multi-objective congestion control. In Pro-
ceedings of the Seventeenth European Conference on Computer Systems.
218–235.

[24] Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. 2021. When Is
Generalizable Reinforcement Learning Tractable? Advances in Neural
Information Processing Systems 34 (2021), 8032–8045.

[25] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streaming with pensieve. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication.
197–210.

[26] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning Scheduling Al-
gorithms for Data Processing Clusters. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM ’19). As-
sociation for Computing Machinery, New York, NY, USA, 270–288.

https://github.com/opendilab/DI-engine

Achieving Fairness Generalizability for Learning-based Congestion Control with Jury EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

https://doi.org/10.1145/3341302.3342080

[27] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael
Schapira. 2020. PCC proteus: Scavenger transport and beyond. In
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 615–631.

[28] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning. PMLR, 1928–
1937.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control
through deep reinforcement learning. nature 518, 7540 (2015), 529–
533.

[31] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Ac-
curate Record-and-Replay for HTTP. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15). 417–429.

[32] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John
Schulman. 2018. Gotta learn fast: A new benchmark for generalization
in rl. arXiv preprint arXiv:1804.03720 (2018).

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf

[34] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and
Rob Fergus. 2020. Automatic data augmentation for generalization in
deep reinforcement learning. arXiv preprint arXiv:2006.12862 (2020).

[35] Alessio Sacco, Matteo Flocco, Flavio Esposito, and Guido Marchetto.
2021. Owl: congestion control with partially invisible networks via
reinforcement learning. In IEEE INFOCOM 2021-IEEE Conference on

Computer Communications. IEEE, 1–10.
[36] J Salim, H Khosravi, Andi Kleen, and Alexey Kuznetsov. 2003. Linux

netlink as an ip services protocol. Technical Report.
[37] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science
362, 6419 (2018), 1140–1144.

[38] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina
Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja Trebacz,
Max Jaderberg, Michael Mathieu, et al. 2021. Open-ended learning
leads to generally capable agents. arXiv preprint arXiv:2107.12808
(2021).

[39] The Google BBR Team. [n. d.]. BBR bandwidth based convergence.
([n. d.]). https://github.com/google/bbr/blob/master/Documentation/

bbr_bandwidth_based_convergence.pdf.
[40] Han Tian, Xudong Liao, Chaoliang Zeng, Junxue Zhang, and Kai Chen.

2022. Spine: an efficient DRL-based congestion control with ultra-
low overhead. In Proceedings of the 18th International Conference on
emerging Networking EXperiments and Technologies. 261–275.

[41] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ international confer-
ence on intelligent robots and systems. IEEE, 5026–5033.

[42] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina:
Computer-Generated Congestion Control. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 123–134. https:
//doi.org/10.1145/2486001.2486020

[43] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Sto-
chastic forecasts achieve high throughput and low delay over cellular
networks. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). 459–471.

[44] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby,
Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground
for Internet congestion-control research. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18).

[45] Siyu Yan, XiaoliangWang, Xiaolong Zheng, Yinben Xia, Derui Liu, and
Weishan Deng. 2021. ACC: Automatic ECN Tuning for High-Speed
Datacenter Networks. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference (SIGCOMM ’21). Association for Computing Machinery,
New York, NY, USA, 384–397. https://doi.org/10.1145/3452296.3472927

[46] Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai
Chen. 2022. Liteflow: towards high-performance adaptive neural
networks for kernel datapath. In Proceedings of the ACM SIGCOMM
2022 Conference. 414–427.

https://doi.org/10.1145/3341302.3342080
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/google/bbr/blob/master/Documentation/bbr_bandwidth_based_convergence.pdf
https://github.com/google/bbr/blob/master/Documentation/bbr_bandwidth_based_convergence.pdf
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/2486001.2486020
https://doi.org/10.1145/3452296.3472927

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DRL-based Congestion Control
	2.2 Generalizable Fairness Issue
	2.3 Key Design Decisions

	3 Design
	3.1 Signals Transformation
	3.2 Rate Adjustment Generation
	3.3 Reward
	3.4 Signal/Action Processing
	3.5 Training

	4 Implementation
	5 Evaluation
	5.1 Generalizable Fairness
	5.2 Consistent Performance
	5.3 Overhead

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

