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Privacy-preserving machine learning (PPML) algorithms use secure computation protocols to allow multiple

data parties to collaboratively train machine learning (ML) models while maintaining their data confiden-

tiality. However, current PPML frameworks couple secure protocols with ML models in PPML algorithm

implementations, making it challenging for non-experts to develop and optimize PPML applications, limiting

their accessibility and performance.

We propose Sequoia, a novel PPML framework that decouples ML models and secure protocols to optimize

the development and execution of PPML applications across data parties. Sequoia offers JAX-compatible

APIs for users to program their ML models. It uses a compiler-executor architecture to automatically apply

PPML algorithms and system optimizations for model execution over distributed data. The compiler in

Sequoia incorporates cross-party PPML processes into user-defined ML models by transparently adding

computation, encryption, and communication steps with extensible policies. The executor efficiently schedules

code execution across multiple data parties, considering data dependencies and device heterogeneity.

Compared to existing PPML frameworks, Sequoia requires 64%-92% fewer lines of code for users to

implement the same PPML algorithms, and achieves 88% speedup of training throughput in horizontal PPML.
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1 Introduction
Recent years have seen a rise in public concern over personal privacy, and governments globally

regulate personal data sharing and usage (e.g., GDPR [30]), driving the demand for secure computing

solutions in regulated sectors like banking, health, and insurance. Privacy-preserving machine
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learning (PPML) has become the key technological enabler for organizations to train ML models

collaboratively using distributed datasets without risking data leaks. For example, hospitals can

use PPML to jointly train medical image diagnosis models without sharing patient data [40].

PPML experts have designed many efficient secure computation protocols based on techniques

like homomorphic encryption [13, 19] and secret sharing [26, 33]. However, the real-world situation

is that, the adoption of PPML in today’s ML applications is still in a very early stage, because

integrating PPML algorithms into these ML applications presents a knowledge barrier. For example,

NVFlare [7] users need to call 15 internal APIs [3] to perform secure aggregation in PPML, while

adding a new PPML algorithm requires further API change and application porting. We found that

developing PPML applications correctly and efficiently over data across multiple parties requires

understanding when and how to utilize security-related features within existing PPML frameworks.

As a result, although there have been significant advancements in security andML algorithms, the

PPML frameworks – responsible for taking ML model definition and executing PPML computation

across diverse data, hardware, and network conditions – fall short in addressing both upper-level user
accessibility and lower-level extensibility for new and existing PPML algorithms and optimizations,

becoming a narrow waist of the software stack. Our view is that PPML frameworks should remove

the complexity of PPML integration from the ML application level.

Existing PPML frameworks have limitations in their architecture, which causes secure protocols

and ML models to be tightly coupled in PPML applications. This hinders both the development

of new applications by ML users and the addition/optimization of algorithms by PPML experts.

We briefly introduce existing PPML frameworks under three categories and leave more in-depth

discussions in §2.3.

• Client-Server Model. TensorFlow Federated [11], OpenFL [25], and Flower [14] utilize a client-

server architecture where clients train local models, and the server performs parameter aggrega-

tions. However, PPML algorithms [26, 33] that require inter-party peer-to-peer communications

are not suitable for this client-server computation model.

• API Frameworks. Frameworks such as NVFlare [7], PySyft [9], FATE [1] and MP-SPDZ [42]

each develop unique APIs and workflow abstractions, which can be challenging for users to

adopt in their applications. This complexity arises from the need to learn and correctly utilize

the programming interfaces of both ML models and secure computation protocols.

• One-off Implementations. PPML researchers also build one-off frameworks and libraries

tailored to specific PPML algorithms, such as VF
2
Boost [28] and REDsec [26], offering point

solutions. However, these frameworks lack extensibility, leading to missed opportunities for new

secure protocols in PPML applications. They also push standard system and security challenges,

such as batching [38, 75] and pipelining [55], to individual implementations.

Additionally, optimizations in existing work are often handcrafted without low-level abstractions

like tasks and operators, therefore, optimization opportunities that already exist in ML systems

(e.g., task graph scheduling [32], operator acceleration [76]) may not be fully exploited. This causes

software fragmentation and reduces the flexibility and efficiency of PPML applications.

The need for the division of labor between ML and PPML experts drives new requirements for

novel PPML frameworks:

(1) The front-end API needs to be expressive and flexible for non-experts, and should abstract away
many of the complexities in underlying PPML algorithms, including hiding the model-independent

secure protocols by transparently fusing cryptographic operations such as Homomorphic Encryp-

tion (HE) [2, 12] into ML models.
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(2) The back-end executor must be optimized for efficiency, with considerations of the interleaved

data dependencies and heterogeneous computing devices across multiple data parties, and efficiently

schedule the execution of computation and communication to minimize straggler blocking and

achieve higher global speed.

In this paper, we propose Sequoia, a general-purpose PPML framework that decouples secure

computation protocols and MLmodels, allowing flexible combination and independent optimization

of the secure protocol and ML model inside any PPML application. Through a compiler-executor

architecture, Sequoia’s compiler transparently transforms the user-defined ML model into an opti-

mized, PPML-enabled program. The executor efficiently schedules code execution across multiple

data parties, managing data dependencies and device heterogeneity.

Sequoia has key innovation in three aspects:

PPML Intermediate Representation (PPIR) (§3). PPIR is a novel approach to building extend-

able compiler infrastructure and execution environment for PPML. PPIR effectively captures the

complex semantics of PPML algorithms with distributed data types and extendable PPML-specific

operations, such as secure aggregation and cryptographic operations. The upstream compiler

generates PPIR with secure computations incorporated into the user-defined ML model, while

the downstream executor focuses on optimizing PPIR execution in the target environment. PPIR

decouples model expression from PPML execution, and also facilitates the connection to existing

lower-level compilers (e.g., MLIR [48], XLA [63]) to generate optimized executables.

Front-end API and Compiler (§4). Sequoia’s high-level API abstracts away almost all PPML-

related aspects, requiring only model and data distribution specification from the user. This makes

programming PPML-enabledMLmodels with Sequoia similar to working with centralized models in

frameworks like PyTorch. To achieve this, Sequoia’s compiler analyzes the user-defined ML model’s

syntax tree, identifies operations needing cross-party computation by abstractly evaluating data

shapes, and automatically applies secure computation protocols in PPML algorithms. Furthermore,

Sequoia is not tied to specific PPML algorithms; it offers an extensible compiling mechanism where

PPML algorithms are added as transformation policies.

Back-end Executor (§5). Sequoia’s executor constructs a computation graph from PPIR and finds

an efficient execution schedule to optimize global speed. Sequoia has the following key features

to handle PPML computations, which have interleaved data dependency patterns spanning both

cross-party and intra-party contexts. (1) Sequoia efficiently schedules and executes the computation

and communication tasks in each data party with a decentralized scheduler. (2) Sequoia supports

two levels of compute nodes, distributing PPML computations efficiently across and within parties

using different parallelization strategies.

To summarize, Sequoia makes the following contributions with a novel system design using a

compiler-executor architecture that decouples secure computation from ML model computation:

• For ML users, Sequoia enables the expression of multi-party models without enforcing security

expertise, facilitating the division of labor in PPML and enhancing PPML accessibility.

• For PPML developers, Sequoia addresses software fragmentation with an extensible compiling

mechanism that allows adding new PPML algorithms and connecting to lower-level compilers,

without changing user programs.

• Sequoia proposes a decentralized cross-party scheduling algorithm under the two-level com-

pute node hierarchy (intra- and inter-party), improving PPML efficiency in distributed model

execution.

• Evaluation shows that, when compared to popular baselines, Sequoia requires 64%-92% fewer

lines of code and achieves up to 88% training throughput speedup in horizontal PPML.
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Fig. 1. The two paradigms of cross-silo PPML are based on how data is distributed across data

parties. These data distributions commonly occur in real-world scenarios, such as hospitals collabo-

rating to predict patient health conditions (see examples in §2.1).

2 Background and Related Work
Privacy-preserving machine learning (PPML) is a technique for training Machine Learning (ML)

models on decentralized data while maintaining data confidentiality.

2.1 Cross-silo PPML
This paper focuses on optimizing PPML under the cross-silo setting [37, 41, 75]. A data silo is

a collection of data controlled by a single organization (e.g., institution, company, etc.), which

remains separate from other organizations due to laws and regulations [30].

Cross-silo PPML can be particularly useful for organizations that collect sensitive data from their

users, such as healthcare providers or financial institutions. These organizations can collaboratively

train accurate and robust models while ensuring that their users’ data remain secure and private

within their premises.

Problem Formulation and Data Distribution. In cross-silo PPML, multiple data silos collaborate

to train a global model without directly sharing their data. The learning objective aligns with the

standard machine learning optimization process, formulated to find the optimal parameters 𝜃 ∗ that
minimize a given loss function:

𝜃 ∗ = argmin

𝜃

1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝜃 ;𝑥𝑖 , 𝑦𝑖 ) (1)

Here, 𝜃 denotes the parameters of the model being trained, and 𝐿(𝜃 ;𝑥𝑖 , 𝑦𝑖 ) represents the loss

function for a sample (𝑥,𝑦), measuring the discrepancy between the predicted and the true label.

𝒟 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 denote the dataset with 𝑁 samples. In Equation 1, 𝑥𝑖 represents the feature

vector, and 𝑦𝑖 is the target label for the 𝑖-th sample. In cross-silo PPML, each data silo (referred to

as "data parties") owns a partition of the dataset, collaborating with other parties to train a global

model over the distributed data.

This collaborative learning process depends on specific PPML algorithms [2, 34, 74] and typi-

cally involves secure computations to protect the privacy of each silo’s data. Based on how data

distribution across participating data parties (Figure 1), PPML schemes can be categorized into

horizontal PPML and vertical PPML [73].

Algorithms for Horizontal PPML. In horizontal PPML (Figure 1a), data parties have different

sample spaces but share the same feature space. Each party controls the labels of its samples. For
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example, hospitals with electronic health records data may have similar data structures but different

patient information, they can collaborate to train a global model to predict the change of a patient’s

health condition based on their health records.

Data parties train local models using their own samples and perform cross-party model pa-

rameter aggregation [44, 50, 57, 65] to update the model globally. To protect data privacy, some

methods [15, 68] employ cryptographic techniques, such as Secret Sharing and Homomorphic En-

cryption (HE) [12], to aggregate over the received ciphertexts for the global model update without

disclosing their local results.

Algorithms for Vertical PPML. In vertical PPML (shown in Figure 1b), data parties in vertical

PPML settings have different feature spaces over the samples. For example, an insurance company

can collaborate with a hospital to predict the patient’s insurance claims based on the patient’s

health records, while the health records remain private and are not shared between the two parties,

ensuring compliance with privacy regulations and preventing direct access to sensitive data.

Simple parameter aggregationmethods used in horizontal PPML are inadequate for vertical PPML,

because each participant only sees part of the model parameters corresponding to its local feature

dimensions during training. Vertical Linear Regression [43, 74] uses HE to encrypt intermediate

results and exchange them with other data parties. Split Learning [34] divides a neural network

into two parts: the front end, which is trained on the node where the feature data is located, and

the back end, which is trained on where the label (target) data is located, therefore, a global model

is trained across data parties without transmitting any local label features.

PPML Inference. In horizontal PPML, each party obtains a local model after training and can

independently run inference on its local data as with traditional machine learning models, without

needing secure computations. In contrast, inference in vertical PPML typically requires cross-party

secure computations due to two factors: (1) The final model may be split across parties during

training, requiring collaborative inference to make predictions on new data. (2) Even if the final

model is made centralized after training, inference may still involve multiple parties since the input

features for new data may be distributed among them. This paper focuses on the training process

in PPML, as inference can be considered as a part of the computations in training, especially for

vertical PPML.

2.2 Decentralized and Federated Learning
While PPML is inherently distributed due to multiple data parties collaboratively training a model,

decentralized learning (and its subset, federated learning) follows different computational paradigms.

In decentralized learning, each worker𝑚 holds a local dataset 𝒟𝑚 and performs local training to

minimize loss function with local model parameter 𝜃 ∗𝑚 :

𝜃 ∗𝑚 = argmin

𝜃𝑚

1

|𝒟𝑚 |

|𝒟𝑚 |∑︁
𝑖=1

𝐿(𝜃𝑚 ;𝑥𝑖 , 𝑦𝑖 ) (2)

After local optimizations, the workers share their model updates. Prior work [29, 71] explores

communication optimizations to reduce overhead and improve efficiency in model synchronization.

Federated Learning (FL), a specific form of decentralized learning, is designed to train machine

learning models across numerous decentralized devices, often referred to as "clients". Initially

proposed by Google, FL was developed as a cloud-based scheme to train a predictive model for

keyboard input on Android devices, with data distributed across numerous edge devices (e.g.,

smartphones) connected via the internet. We make a special note that some recent literature refers

to cross-silo FL [37, 75], which actually aligns with the definition of cross-silo PPML in §2.1. Here,

we use FL in its original sense as proposed by Google, referring to its cross-device environments.
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Unlike traditional decentralized learning, FL introduces additional challenges due to the hetero-

geneous nature of its clients, which vary in computational resources, connectivity, and dataset

sizes. Furthermore, while FL shares privacy considerations with PPML, it requires distinct system

optimizations, such as participant selection [47], and security measures, including data integrity

validation [51, 60], to address the decentralized and dynamic environment in which it operates.

2.3 Related Work: Existing Systems for PPML
PPML frameworks facilitate the PPML process in which the data owners collaboratively train a

model without exposing their data to others. We categorize existing frameworks as follows.

Client-Server Architectures. Many of the existing frameworks employ the classic client-server

architecture, where the clients train the local model with local data, and the server is in charge of

aggregations. For example, TensorFlow Federated [11], OpenFL [25] and Flower [14] implement

server-client APIs for local clients to send model information (e.g., parameter or gradients) to the

server.

The client-server model lacks architectural support and optimization for inter-party dependencies

that require peer-to-peer communication, making it unsuitable for certain secure computations

such as ABY [23]. Moreover, since the intermediate results sent to the central server can reveal

information about the parties’ local data, the client-server model is also not suitable in scenarios

where end-to-end security is required [27].

API Frameworks. Other existing frameworks, including PySyft [62], NVFlare [7], Tensorflow

Encypted [10], and FATE [1], provide a fixed set of functionalities through APIs for user program

integration. They introduced their own workflow abstractions and APIs for cross-silo PPML: users

are required to implement both PPML algorithms and ML model definitions using their specific

internal APIs and workflows.

For example, NVFlare requires the use of 15 internal API classes [8] in the ML model definition

for horizontal PPML, and adding a new PPML algorithm requires further API change and user

program adoption/porting. This approach leads to a steep learning curve and causes fragmentation

from a software architectural perspective.

One-off Implementations. In response to the limited extensibility found in the aforementioned

frameworks, PPML researchers and practitioners today build one-off frameworks or libraries

tailored to specific PPML algorithms. For example, VF
2
Boost [28] and SecureBoost [18] were

created specifically for gradient boosting decision tree (GBDT) algorithms [49], REDsec [26] for

FHE-based neural network inference, PEA [61] for differential privacy-based multi-party learning.

While it is technically possible to implement new PPML algorithms by integrating existing ML

and cryptographic libraries, this approach imposes an engineering barrier on PPML application

development, as the need to address standard system and security challenges such as scheduling,

data movement, and cryptographic operations falls on each individual implementation.

2.4 Motivations of Sequoia
PPML applications require a complex integration of secure computations and ML models. We aim

to achieve two primary objectives:

• Creating a user-friendly framework that simplifies the integration of secure computations and

ML models, and improves execution efficiency through system-level optimizations.

• Designing an extensible mechanism that can support a wide range of PPML algorithms, both

current and future, ensuring accessibility and efficiency in deploying these PPML algorithms.
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@ppml(rank, scheme, args)
def update(param, x, y):
  d = grad(loss)(param, x, y)
  param = param - lr * d

cn:f32[10,784] = mul 0.1 cm
co:f32[10,784] = sub a cn
cp:f32[10] = mul 0.1 ck
cq:f32[10] = sub b cp

Distributed Dataset

Machine Learning 
Model

ML Code using Sequoia API Compiling to PPIR PPIR Lowering and Cross-Party Execution

Party A

Party B

Party B

Party A

Real-world ML Application

No PPML-specific knowledge required Transparent Incorporation of  PPML Multi-Party, Multi-Host Scheduling

Fig. 2. Overview of Sequoia’s workflow. Sequoia’s API abstracted away the complexities in PPML

algorithms. Sequoia employs a compiler-executor architecture: the compiler (§4) transforms the

user’s ML code (including model definition, forward pass and training code, see the example in

§4.1) into an optimized, PPML-enabled intermediate representation (PPIR, §3), and the executor (§5)

lowers PPIR to machine code and executes inside each data party.

3 PPML Intermediate Representation
Intermediate Representation for PPML (PPIR) is a novel approach to constructing a reusable and

extendable compiler infrastructure and execution environment for PPML. PPIR serves as a backbone

for Sequoia, which expresses cross-party model computations and integrates Sequoia into existing

compiler infrastructures.

Figure 2 depicts an overview of the compiler-executor workflow in Sequoia and shows where

PPIR fits in. The compiler translates the user-defined MLmodel into an optimized PPIR, the executor

generates code for each data party and schedules for efficient execution on the computation graph.

To represent complex PPML algorithms, PPIR provides enhanced expressiveness and flexibility

in its definition:

UnifiedData Type for DistributedData.One of the key strengths of PPIR is its ability to represent

the distributed data layout that is unique in PPML settings. PPIR can view data that is distributed

across multiple parties as a single variable and apply high-level operations on these distributed

variables. This allows for a more efficient and expressive representation of PPML algorithms, and

the client operations can be derived from the high-level representation at a later stage.

Target-Specific Operations. Another key feature of PPIR is its ability to utilize target-specific

optimizations, including accelerator-specific operations or basic cryptographic operations. To

achieve this, a two-stage PPIR compilation is used to effectively capture the complex semantics of

PPML algorithms, enabling efficient low-level optimization on target platforms.

3.1 PPIR Syntax and Distributed Data Types

PPIR Syntax. PPIR’s syntax is explicitly typed, functional, and follows A-normal form (ANF)

principles [64]. Its structure draws inspiration from the successful 𝑗𝑎𝑥𝑝𝑟 format [16]. The formal

grammar of PPIR, shown in Figure 3, comprises three segments: input (lambda), operations (let),
and output (in).
The layout of data in PPML is distributed across multiple data parties to train the same ML

model. The distribution of data has two levels, cross- and intra-party. The cross-party distribution

is unique to PPML algorithms, where data from one party cannot be revealed to any other parties.

Distributed Data Types. The distributed data type is a key and novel design in Sequoia that

allows high-level interaction with decentralized data as if it were local. PPIR’s distributed data

types are distributed tensor or its low-dimension variants.

PPIR introduces a two-level data shape, where the size of the inner level corresponds to the

number of data parties. As illustrated in Figure 4, [(50, 50), 784] means there are 100 samples

distributed over the first axis, while each of the two parties holds 50 samples. [100, (784, 0)] means
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# Grammar of PPIR
PPIR ::= { lambda <Var>*;

let <Eqn>*;
in <Var>+;

}
Var ::= <name>:<data_type> | <literal>
Eqn ::= <operation> [<Param>*] <Var>+
Param ::= <name>=<Var>

Terms Definition
name name of variable, enumerated locally as a, b, ..., aa, ab.

literal constant values, e.g, a predefined threshold value.

data_type data type and shape, see §3.1 for details

operation PPIR-defined set of operators, see §3.2 for details.

Fig. 3. The syntax of PPIR. PPIR provides enhanced expressiveness for PPML algorithms with

unified data type for distributed data and target-specific operations.

# Centralized dataset, with batch size of 100,
# feature size of 784, and label size of 10
x:f32[100, 784], y:i32[100, 10]

# Horizontally (sample-based) distributed definition
x:f32_d[(50, 50), 784], y:i32_d[(50, 50), 10]

# Vertically (feature-based) distributed definition
x:f32_d[100, (784, 0)], y:i32_d[100, (0, 10)]

Fig. 4. Example definition of distributed data types.

the data is distributed over the second axis, where the first data party possesses all 784 features,

and [100, (0, 10)] means the second data party has all the labels.

To interact with distributed data types, PPIR defines PPML-related operations (§3.2) to express

cross-party calculations over distributed data, such as secured matrix multiplication. However, to

actually carry out the cross-party operations, they need to undergo internal transformations during

the compilation of PPIR, where the operations are converted into single-party steps based on secure

protocols, while remaining in the PPIR format. Details about the compilation process are in §4.

Agonostic for Intra-party Operations. PPIR does not directly manage distributed computations

within a data party but views a single data party’s computing resource as a unified entity. This design

enables the executor (§5) to dynamically assign computation tasks within a party to its compute

resource during runtime, giving the executor complete control over optimizing and executing

intra-party computations. This approach is also necessary because a single data party’s computing

resource might be dynamic.

3.2 PPIR Operations
PPIR extends the standard set of ML computation operations with a list of new operations designed

to support the secure computation protocols used in PPML algorithms, as shown in Table 1.

MLComputation. These operations are designed to correspond to widely adopted neural networks
(NN) and ML primitives supported by lower-level computation libraries such as CuDNN. The

executor of PPIR can map these operations to their computation backends.
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Table 1. Types of PPIR operations supported by Sequoia.

Operations Examples
ML Mathematical Primitives

Computation mul, matmul, dot, add, sin, max, ...

High-level Abstractions
Secure s_add, s_matmul, s_max, s_dot, ...

Computation Cryptographic Operators [12, 24]
he_encrypt, ss_max, ...

Peer-to-Peer Communications
Comm. send, recv, all_to_all

Operations Collective Communications & Computation
all_gather, all_reduce, broadcast, ...

Specific to PPML Algorithm [44, 45, 57]
Custom fedavg, fedsgd, fedyogi, ...

Operations Specific to Specialized Accelerator [59]
fpga_matmul, rdma_read, square_add, ...

Secure Computation. Cross-silo PPML utilizes security techniques such as homomorphic en-

cryption, secret sharing and differential privacy, in this paper, they are collectively termed secure
computation. PPIR defines two levels of secure computation:

(1) High-level abstractions are standard ML computations but over distributed data and needed

to be protected, with the prefix "𝑠_". During compilation (§4). They will be broken down into

low-level computations based on the PPML algorithm used.

(2) Low-level computations that are specific to secure protocols like homomorphic encryption,

which can be executed using standard implementation or specialized accelerators.

Communication Operations. PPML communication differs from collective communication in

distributed ML because secure computation demands interleaved data exchange. When designing

PPIR, we explicitly expose communication operations as first-class citizen, hence decoupling commu-

nication from the computation. This design allows the underlying executor to exploit overlapping

opportunities between communication and computation tasks.

Custom Operations. PPIR further allows adding custom operations, such as a new secure aggre-

gation scheme. This extensibility lets users expand the range of PPML algorithms supported by

Sequoia and seamlessly connect them with Sequoia backend. Moreover, user-defined operations can

be implemented tailored to the target platform, giving users access to high-performance capabilities

in specialized accelerators.

Operations Supported by Sequoia. When executing PPIR (§5), Sequoia supports all basic ML

computation operators through JAX [16] and also provides corresponding high-level abstractions

prefixed with "s_" for secure ML computations over distributed data. These high-level abstractions

undergo compilation passes (§4) and are transformed into low-level or custom operations based on

specific PPML algorithms, including cryptographic operators and custom operations in PPIR.

The lower-level secure operations and custom operations implemented in Sequoia include

homomorphic encryption operators, secret sharing operators, and secure aggregation operators,

which are used in our evaluation (§7).

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 74. Publication date: February 2025.



74:10 Kaiqiang Xu, Di Chai, Junxue Zhang, Fan Lai, & Kai Chen

{
# batch size of 100 and splitting into 2 parties
lambda w:f32[784, 10], b:f32[10],
x:f32_d[(50, 50), 784], y:f32[(50, 50), 10];
let e:f32_d[(50, 50), 10] = s_dot x w
# showing only the final parameter update steps
cl:f32_d[(50, 50), 10] = s_add bz cg
cm:f32[784, 10] = s_dot cl x
cn:f32[784, 10] = mul 0.1 cm
co:f32[784, 10] = sub a cn
cp:f32[10] = mul 0.1 ck
cq:f32[10] = sub b cp;
in co, cq;

}

Fig. 5. PPIR for gradient descent and parameter update in horizontal neural network training.

{
# feature size of 16 and distributed across 2 parties
lambda x:f32_d[16, (8, 8)], w:f32_d[(8, 8)], b:f32[];
let d:f32[16] = s_dot x w
e:f32[16] = add d b
f:f32[16] = sigmoid e;
in f;

}

Fig. 6. PPIR for inference in vertical logistics regression. Input variables are renamed for readability.

Communication operations supported in Sequoia are implemented through NCCL [4], including

all peer-to-peer communications [6] and collective communications [5].

Details on how the compilation process utilizes low-level operations in PPML algorithms and

adds support for new operators can be found in §4.4.

3.3 Examples using PPIR
This section provides examples of how PPIR expresses two common PPML paradigms: vertical

(feature-based) and horizontal (sample-based). The definitions of these schemes are discussed in

§2.1.

Horizontal NN. Figure 5 demonstrates the steps of gradient descent and parameter update for

horizontal NN training in PPML. Similarly, the input data shape definition indicates that the data is

distributed along the first axis (sample axis), as in horizontal PPML.

Vertical Logistic Regression. Figure 6 illustrates the steps involved in performing inference

using vertical logistic regression in PPIR. The high-level operator s_dot is used for computation

over distributed input data: s_dot takes two distributed variables as input and produces a local

variable as output. The definition of input data shape (x : f32_d[16, (8, 8)]) indicates that the data
is distributed along the second axis, which corresponds to the feature axis, meaning that vertical

PPML should apply here.

Two-Level Operation Abstraction. Both examples provided below involve operations denoted

by s_dot, which take distributed variables as input and produce a local variable as output. As

discussed earlier in §3.2, these are high-level abstractions (prefixed with s_), indicating the need
for cross-party computations.

To transform these high-level cross-party operations into lower-level ones that can be executed

within each data party, Sequoia offers an extensible compiling mechanism where specific PPML

algorithms are incorporated as transformation policies (refer to §4.3 for details and examples). The

PPML algorithm used as the transformation policy is selected by the user (§4.1).
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4 Sequoia API and Compiler
In this section, we introduce Sequoia’s front-end component, API, and PPML-enabled compiler.

The design goal is:

• Hide the model-independent secure protocols in PPML for the non-expert to program ML model

with Sequoia’s API.

• Transparently incorporate secure computation protocols into the ML model and generate PPIR

for execution.

4.1 Programming Model
Sequoia uses JAX/NumPy-compatible API design for users to program their ML models. The user’s

ML code defines the function for model inference and loss calculation, while gradients are computed

automatically through auto-differentiation.

In the user’s program, data distribution among parties is explicitly defined using distributed data

types and their shapes, enabling PPIR to manage data exchanges as discussed in §3. This definition

aligns with the cross-silo PPML paradigm, which involves data distributed across multiple known

parties.

An example of an ML model programmed with Sequoia’s API is shown in Figure 7, and highlights

the two steps needed to program the ML model and enable PPML in Sequoia:

Step 1: Sequoia provides an intuitive syntax to declare a distributed data type and map data

partitions to parties, which simplifies the definition of data distribution. The cardinality of the

distributed dimension is defined in the data type’s shape. For external parties, cardinality is set to

None, but the shape indicates the number of dimensions. The PPML algorithm determines whether

the cardinality of an external party’s data partition needs to be synchronized with others.

from sequoia import ppml, FEDAVG, int_d

RANK = os.environ["SEQUOIA_RANK"]

# step 1: prepare the distributed data
images_l, labels_l = load(batch_size=50)
images_d = int_d(images_l, shape=((50, None), 784))
labels_d = int_d(labels_l, shape=((50, None), 10))
params = init_network_params(layer_sizes)

# step 2: enable PPML with ML model over distributed data
def loss(params, x, y):

preds = model.predict(params, x)
return cross_entropy_loss(preds, y)

@ppml(party_idx = RANK, scheme = FEDAVG, args)
def update(params, x, y):

grads = grad(loss)(params, x, y)
return [(w - step_size * dw, b - step_size * db)

for (w, b), (dw, db) in zip(params, grads)]

params = update(params, images_d, labels_d)

Fig. 7. A prototype implementation of ML models using Sequoia API, with one round of model

parameter update. Some common imports and definitions are omitted for brevity.
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Step 2: Users program ML models as if all computations occur locally and use the @ppml
decorator to trigger compilation, where Sequoia incorporates PPML algorithms to perform cross-

party operations.

In summary, Sequoia offers APIs that allow users to define and program their ML models as if

computations occur locally. It employs compilation passes to add secure computation protocols

necessary for cross-party operations in PPML algorithms.

This section will describe the two compilation passes in Sequoia that convert the user program

into PPIR and explain how the transformation policies incorporate PPML algorithms. Figure 8

depicts an overview of the compiler’s workflow described in this section.

s_dot x w

• 

from sequoia import ppml, FEDAVG

@ppml( party_idx  = RANK
       scheme     = FEDAVG, 
       args       = ...)
def update(param, x, y):
  d = grad(loss)(param, x, y)
  return param - lr * d

Ahead-of-Time Compilation 
and Local Execution

@ppml decorator: 
• receive PPML scheme and settings
• triggers the PPIR compilation

distributed data
types

Scheme-agnostic PPIR 
over Distributed Data

User Code 
Assuming Centralized Data

Scheme-Specfic PPIR
for Per-Party Execution 

trace

split
Built-in

Custom

dot x w

• 
#A

#A
#A & #B

#B

dot x w

• 
#B

add a b

send

recv

send

+ 
#C

   Algorithm- or 
   Accelerator-Specific

•  Use XLA → CUDA

Interpreting PPIR Operations

Runtime 
Context

•  Key Managment
•  Bootstrapping (HE)
•  Moment Accountant (DP)

Providing PPML Contexts (example)

•  

lower

Fig. 8. Sequoia compiles user programs to PPIR in two passes. The first pass (trace) abstractly
evaluates distributed data type and generates scheme-agnostic PPIR with high-level cross-party

operation from a centralized perspective. The second pass (split) transforms the cross-party PPML

operations into secure computations in each data party, following transformation policies defined

for a specified PPML scheme. The final PPIR is lowered to machine code by Sequoia executor for

execution.

4.2 Compilation Pass: Trace
In the first compilation pass named trace, the aim is to create a centralized representation of the

PPML application, identifying cross-party operations and data distributions clearly.

Decorator. Sequoia introduces a Python decorator@ppml to locate the compilation target while

also receiving necessary configurations from the user. Sequoia traverses the syntax tree of the user

code and translates it to ML and PPML operations expressed in PPIR (Figure 7, step 2).

Abstract Evaluation. Sequoia traces the user program and identifies the ML computation steps

over distributed data, which will require secure computations across parties. This is statically

inferred from user code by abstractly evaluating the data shape declared in user code (Figure 7,

step 1).

Generating Scheme-agnostic PPIR. Sequoia translate ML computation over data distributed

across parties to high-level secure computation operations in PPIR, such as s_dot and s_add,
to mark them for further processing in the downstream compilation pass. The user-declared

distributed data shapes are directly mapped into distributed data types in PPIR. This process is

PPML-scheme-agnostic, as it generates PPIR that is not specific to any particular PPML algorithm.

The goal of this pass is to get a clear representation of PPML application from a centralized

perspective, before applying any PPML algorithms. These high-level, cross-party operation abstrac-

tions in PPIR help identify which computations need to be performed securely with data distributed

across parties. In the next pass, the high-level abstractions are transformed into concrete secure

computations to run in each data party.

Example. In Figure 8, a simplified example shows the process between the first and second steps

demonstrates this compilation pass: with the @ppml decorator, Sequoia finds the compilation
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x = int32_d(shape=((50, 50), 784))
y = int32_d(shape=((50, 50), 10)) 

@ppml(party_idx, scheme, args)
def update(params, x, y):
  grads = grad(loss)(params, x, y)
  return [(w - .1 * dw, b - .1 * db)
          for (w, b), (dw, db) 
            in zip(params, grads)]

lambda w:f32[784, 10], b:f32[10], 
       x:f32_d[(50, 50), 784],
       y:f32[(50, 50), 10]; 
let 
e:f32_d[(50, 50), 10] = s_dot x w 
. . .
cl:f32_d[(50, 50), 10] = s_add bz cg 
cm:f32[784, 10] = s_dot cl x 
cn:f32[784, 10] = mul 0.1 cm
. . . 

lambda w:f32[784, 10], b:f32[10], 
       x:f32[50, 784],
       y:f32[50, 10]; 
let 
e:f32[50, 10] = dot x w 
. . .
cl:f32[50, 10] = add bz cg 
cm:f32[784] = dot cl x 
cm_global:f32[784] = fedavg[idx] cm
cn:f32[10, 784] = mul 0.1 cm_global 
. . . 

trace

split
(1) (2)

(3)

#A #B #C

Runtime 
Context

Custom: FedAVG + HE

Built-in: CUDA Kernel

dim3 dimBlock(16, 16); 
dim3 dimGrid((N + dimBlock.x - 1) / dimBlock.x, 
             (N + dimBlock.y - 1) / dimBlock.y); 
matMul<<<dimGrid, dimBlock>>>(A, B, C, N); 

(pk, sk) = HE.KeyGen();
[Wi] = HE.Enc(pk, [Wglob])
Send [Wi] to Party #C;
Receive [Wglob] from Party #C;
Wi = HE.Dec(sk, [Wglob])

lower

symbol table

priv/pub key  

nosie budget

Fig. 9. PPIR compilation with FedAvg+HE: the user code specifies data distribution and PPML

algorithm (FEDAVG+HE); the compiler traces and translates user code into PPIR with cross-party

operations, and splits it into operations for each data party, using built-in and custom operations;

runtime context stores HE information, such as keys and noise budgets.

target and translates the ML computations into high-level operation abstractions in PPIR. Sequoia

automatically adds steps for calculating gradients in PPIR by applying auto differentiation (𝑔𝑟𝑎𝑑

in [16]) to the original model. A more detailed example using FedAvg and HE is in Figure 9.

4.3 Compilation Pass: Split
In the second compilation pass, split, Sequoia transforms the high-level cross-party operations

in PPIR into concrete PPML operations to run in each data party. This is achieved by applying a

transformation policy specific to an PPML algorithm.

Extensible Compilation Mechanism. In Sequoia, PPML algorithms are integrated as transforma-

tion policies, which is a set of rules applied sequentially to PPIR. In the@ppml decorator, it accepts

a parameter named scheme (§4.2), which specifies the policy (i.e., the PPML algorithm) to apply.

Each rule in a transformation policy is a one-to-multiple mapping of PPIR operations, where

the left-hand side (LHS) represents the original instructions in the user code, while the right-hand

side (RHS) is the transformed instructions that enable PPML computation in each data party:

<operation> <Var, T>+ = [<Party#, operation> <Var>+,...]

The algorithm to apply rules is as follows:

On the LHS, the parameter T indicates the index of distributed dimension (or, axis) of the input

variable: if the input variable is not distributed along the T
𝑡ℎ

axis, the rule will not match. This

ensures that the transformation aligns with the expected PPML paradigms and their specific data

distributions (vertical or horizontal). Sequoia will throw an error if no rules can be matched for a

cross-party operation, because PPIR cannot be executed without all high-level operations being

transformed.

On the RHS, the Party# indicates which party will locally execute this operation. PPIR’s dis-

tributed data type automatically splits: when LHS is computing with distributed data, the shape of

input data provided to the RHS operations corresponds to the locally available data partition.
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Intuitively, the LHS of a rule is specific to high-level cross-party operations in PPIR, while the

RHS is specific to the data party’s computation because different data parties perform different

computations depending on their roles. The RHS allows multiple entries of operations, meaning

that a single operation on the LHS can be transformed into multiple operations on the RHS.

Runtime Context. PPML PPML algorithms may lose end-to-end security when broken down into

their basic components, such as when intermediate results are exposed as plaintext. Therefore, the

transformation policy must support cross-operator/primitive control flows when incorporating

PPML algorithms, rather than only supporting individual operator transformations.

Sequoia provides a runtime context to share states across local operations during execution,

giving PPML algorithms larger visibility of the whole program: PPML operations can write to and

read from the runtime context, which can be accessed within a party by all local operations.

PPML operations can leverage runtime context to achieve data-dependent and cross-operation

control flows, such as assigning symbol table attributes to variables including marking whether a

variable is a cipher or plaintext, managing session private keys, monitoring the noise budget in

FHE to trigger bootstrapping [12].

Lowering Scheme-Specific PPIR for Target Execution. After applying the transformation

rules, the compiler generates PPIR that is specific to the PPML algorithm and data distribution.

The scheme-specific PPIR will be processed by Sequoia executor (§5), leveraging existing compiler

frameworks including XLA to lower the PPIR to machine code for execution.

Working Example. Figure 9 illustrates the compilation process for FedAvg+HE [2] (refer to the

figure caption for a detailed explanation). In §4.4, we describe the specifics of adding a transformation

policy with Sequoia’s extensible compiling mechanism, using FedAvg+HE as an example, and

covering the ruleset, runtime context utilization among other implementation details.

4.4 Extensibile Transformation Policies
In Sequoia, PPML algorithms are integrated as transformation policies, which is a set of rules

applied sequentially to PPIR. In the @ppml decorator, it accepts a parameter named scheme, which
specifies the policy (i.e., the PPML algorithm) to apply.

Each rule in a transformation policy is a one-to-multiple mapping of PPIR operations, where

the left-hand side (LHS) represents the original instructions in the user code, while the right-hand

side (RHS) is the transformed instructions to run PPML computation in each data party. This
transformation pass, therefore, is termed split (§4.3).

In Figure 10, we list the transformation policy to integrate FedAvg+HE [2] to Sequoia. To improve

readability, the rules are structured hierarchically, where the top part specifies the match pattern
(conditions for applicability, e.g., operation type, variable types, party roles) and the bottom part

defines the actions to be taken when the pattern is matched (e.g., variable encryption, aggregation

operations). The bottom part may also contain nested sub-rules following the same format.

Workflow Description. The process begins with an aggregration operation (FED_OP), aggre-
gating data across different parties. The FED_OP is triggered for high-level cross-party compu-

tation (s_add, s_dot) on non-cipher distributed data. For data parties, their actions include key

generation, encryption, and data movements. For the aggregator, the rule generates actions to

collect all the data (including from itself) and invoke the HE operand on the ciphertexts.

Note that the rule generates an OpHE operand with the first input parameter being the desired

operations (𝐸𝑞𝑛.𝑂𝑝), this OpHE operand needs to be further transformed by the next rule to apply

specific HE computations.

Next, the HE operation (HE_OP) continues the transformation to perform HE computation on

aggregated data, allowing computations on encrypted data without decryption. This rule applies
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FED_OP
𝐸𝑞𝑛.𝑂𝑝 ∈ {S_Add, S_Dot} 𝑉𝑎𝑟 .𝑇 𝑦𝑝𝑒 ≠ 𝑐𝑖𝑝ℎ𝑒𝑟, ∀𝑉𝑎𝑟 ∈ 𝐸𝑞𝑛.𝑉𝑎𝑟𝑠

RULE_IF_PAR

𝑃𝑎𝑟𝑡𝑦.𝐼𝑑𝑥 ≠ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .{𝑃𝑢𝑏𝐾𝑒𝑦, 𝑃𝑟𝑖𝑣𝐾𝑒𝑦} ← {KeyGen}
𝑉𝑎𝑟HE ← {Encrypt,𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝑃𝑢𝑏𝐾𝑒𝑦,𝑉𝑎𝑟 }, ∀𝑉𝑎𝑟 ∈ 𝐸𝑞𝑛.𝑉𝑎𝑟𝑠,𝑉𝑎𝑟 .𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑐𝑎𝑙

𝑉𝑎𝑟HE .𝑇 𝑦𝑝𝑒 ← 𝑐𝑖𝑝ℎ𝑒𝑟 _← {Send,𝑉𝑎𝑟𝐻𝐸 ,𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 }
𝑅𝑒𝑠𝑢𝑙𝑡HE ← {Recv,𝑉𝑎𝑟 } 𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑎𝑟 ← {Decrypt,𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝑃𝑟𝑖𝑣𝐾𝑒𝑦, 𝑅𝑒𝑠𝑢𝑙𝑡HE}

RULE_IF_AGG

𝑃𝑎𝑟𝑡𝑦.𝐼𝑑𝑥 = 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟

𝑉𝑎𝑟𝑠 ← 𝑉𝑎𝑟𝑠 ∪ {Recv,𝑉𝑎𝑟HE, 𝑖 }, ∀𝑖 ∈ 𝑃𝑎𝑟𝑡𝑦.𝑊𝑜𝑟𝑙𝑑

𝑅𝑒𝑠𝑢𝑙𝑡HE ← {OpHE, 𝐸𝑞𝑛.𝑂𝑝,𝑉𝑎𝑟𝑠 } _← {Broadcast, 𝑅𝑒𝑠𝑢𝑙𝑡HE, 𝑃𝑎𝑟𝑡𝑦.𝑊𝑜𝑟𝑙𝑑 }

HE_OP
𝐸𝑞𝑛.𝑂𝑝 = OpHE 𝑉𝑎𝑟 .𝑇 𝑦𝑝𝑒 = 𝑐𝑖𝑝ℎ𝑒𝑟, ∀𝑉𝑎𝑟 ∈ 𝐸𝑞𝑛.𝑉𝑎𝑟𝑠

RULE_ADD

𝐸𝑞𝑛.𝑉𝑎𝑟𝑠.1 = S_Add

𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑎𝑟 ← {HE_Add, 𝐸𝑞𝑛.𝑉𝑎𝑟𝑠 }

RULE_DOT

𝐸𝑞𝑛.𝑉𝑎𝑟𝑠.1 = S_Dot

𝑃𝑟𝑜𝑑 ← {HE_Mul, 𝐸𝑞𝑛.𝑉𝑎𝑟𝑠 }
𝑅𝑒𝑠𝑢𝑙𝑡 ← {Relinearize, 𝑃𝑟𝑜𝑑 }

if 𝑅𝑒𝑠𝑢𝑙𝑡 .𝑛𝑜𝑖𝑠𝑒 < 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 .𝐵𝑢𝑑𝑔𝑒𝑡 then
𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑎𝑟 ← 𝑅𝑒𝑠𝑢𝑙𝑡

else𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑎𝑟 ← {Bootstrap, 𝑅𝑒𝑠𝑢𝑙𝑡 }

Fig. 10. The transformation policy to integrate FedAvg+HE [2]. The rules are structured hierarchi-

cally, where the top part specifies the match pattern (conditions for applicability) and the bottom

part defines the actions to be taken when the pattern is matched. Nested sub-rules follow the same

format. 𝑂𝑢𝑡𝑝𝑢𝑡𝑉𝑎𝑟 is the final output.

to OpHE operand on cipher variables (which is the output of the rule above), and it performs

relinearization and bootstrapping based on noise budget after multiplications.

Runtime Context. Sequoia provides a runtime context to share states across local operations

during execution: PPML operations can write to and read from the runtime context to achieve

data-dependent and cross-operation control flows.

In the example above, the runtime context is used to store:

• Variable Attributes and Symbol Table (Var.Attr): Assigning attributes of variables such as encryp-

tion state (cipher or plain) and noise budget, which may affect other operations’ actions. When

sending variables across parties, variable attributes are transmitted together and saved to the

receiver ends’ runtime context.

• World Information (Party.World, Party.Idx): Environment information including numbers of

parties, the rank of the aggregator, and the current party’s index.

• Keys (context.PrivKey/PubKey): Storage of both private and public keys for HE operations. As

described above, contexts are local and will not be automatically shared across parties (unless

explicitly specified in PPIR by the transformation policy).

Implementation Details on Intermediate Result Transfer. Because all parties share the

same scheme-agnostic PPIR before the split transformations (§4), the enumerated variable names

(i.e., 𝑎, 𝑏,...) in PPIR are consistent across all parties. In communication operations such as send, recv,
broadcast, the variable name itself serves as the identifier in data transfer.

Connection to Lower-Level Optimizations. Sequoia’s executor (§5) lowers PPIR to machine

code, where it leverages existing ML compilers like MLIR [48] and XLA [63] to generate optimized
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executables on the target platform. Therefore, PPIR operator executions can be accelerated by

linking specialized operator optimizations or domain-specific accelerators via custom calls in XLA,

such as those for HE (e.g., HEaaN [56]) or secret sharing (e.g., BEACON [58]), when applicable.

These optimizations are orthogonal to Sequoia and are discussed in §8.

Developing New PPML Algorithms. To integrate new PPML algorithms, developers need to

define transformation policies for each algorithm. As previously described, these transformation

policies are a set of rules that translate high-level cross-party operations into specific secure

computations within each data party.

While Sequoia offers accessibility advantages for non-experts by automating the integration of

secure computation protocols into ML models, expertise in secure computation is still required for

adding new PPML algorithms. Developers need to understand the secure computation protocols

and data distribution requirements of the algorithm to effectively define its transformation policies.

For instance, to support differential privacy (which is currently not included in Sequoia’s trans-

formation policies), Jin et al. [39] proposed a method to add noise to model parameters before

sending them to the aggregator. This can be implemented by adding a new rule to insert a noise

addition operation prior to invoking the Send operation for parameter aggregation.

Validating the correctness and efficiency of the PPML algorithms implemented in Sequoia is not

currently considered in the system’s design, and we discuss this limitation in §9.

4.5 Secure Considerations and Threat Model
Sequoia offers a generic programming abstraction for PPML applications and an extensible compi-

lation mechanism to incorporate both existing and new PPML algorithms alongside various secure

computation protocols. Its key contribution lies in optimizing the accessibility and performance of

PPML applications by automating the integration of secure computation protocols into ML models.

Consequently, Sequoia is not tied to any specific PPML algorithm and does not alter the privacy-

preserving properties of these algorithms (Sequoia aborts if any cross-party operation is not

transformed). The threat models for PPML applications using Sequoia are inherited from the PPML

algorithm selected by the user.

5 Sequoia Executor
Figure 11 illustrates the design of Sequoia’s distributed execution architecture. This architecture

supports a two-level hierarchy of computing resources, with per-cluster global schedulers and

per-node local executors. Key features are summarized as follows:

Decentralized Cross-Party Scheduling. PPML computation involves unique data dependency

patterns across data parties, and Sequoia efficiently schedules PPML computation and data move-

ment from each data party without requiring global scheduler state synchronization. Sequoia avoids

requiring a centralized system component because: (1) real-world privacy requirements may not

allow deploying a centralized PPML system component. (2) the centralized component is vulnerable

to network delays, especially when intermediate results are frequently exchanged in PPML.

Multi-Party, Multi-Host Execution. Real-world PPML may employ a two-level hierarchy of

compute nodes, where each data party may have multiple nodes. While existing PPML frameworks

often assume one node per party, Sequoia efficiently distributes PPML computations in cross- and

intra-party clusters with different parallelization strategies.

5.1 Decentralized Cross-Party Scheduler
Sequoia deploys one global scheduler in each data party. Each party’s global scheduler makes

scheduling decisions without requiring global state synchronization from peers.
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Fig. 11. Executor workflow (§5). A computation graph is constructed from PPIR, and scheduled

by the cross-party schedulers. Data with dependencies are proactively transferred peer-to-peer to

remote hosts, based on the early-binding placement of tasks.

Step 1: Global Kickoff. At the beginning of execution, all of the global schedulers are boot-

strapped with identical copies of PPIR. The input PPIR is used to construct a global computation

graph, represented as a DAG, where vertices represent tasks and edges represent dependencies

(Figure 11). While the DAG includes tasks and dependencies among all parties, each party focuses

on the partition of DAG relevant to their computations and communication.

Step 2: Computation Graph Consolidation. Sequoia perform vertex contractions on the

computation graph, which regroups tasks at points where cross-party communication occurs. This

method combines sequential local computations into one task, while still allowing cross-party

parallelism and overlap. Employing larger task granularities enables better optimization, such as

vectorization, by lower-level compilers [63].

Step 3: Decentralized Task Prioritization. Within each party’s cluster, the global scheduler

schedules local tasks and cross-party communications for external dependencies. Sequoia prioritize

tasks with a decentralized scheduling strategy (i.e., no information required from other parties) by

considering: (1) external dependency count: prioritizing tasks with more out-of-party successors,

because cross-party communications are blocking. (2) tasks’ estimated length: when dependency

counts are equal, prioritize shorter tasks based on their estimated length.

Task lengths are predicted using its moving average from previous rounds, as PPML are inherently

repeated in rounds, these measurements from previous rounds are sufficiently accurate [46].

Step 4: Intra-Party Early-Binding Placement. Sequoia adopts an early-binding placement

strategy, making intra-party placement decisions before each training round commences: Sequoia

sorts the task with priority in Step 3, and places it in the host with the shortest execution queue.

Early-binding strategy offers advantages over real-time scheduling, as it enables data movements

for subsequent dependent tasks to execute immediately as they are ready, instead of waiting for the

location of the subsequent tasks to be determined. This allows for overlapping and asynchronous

execution of computation and communication, as output data from one operation is proactively

transferred to the destination host while another computation task can simultaneously be executed

on that host (provided such overlapping opportunities exist).

Central Party in PPML. Sequoia employs decentralized scheduling to manage the control flow. It

does not conflict with having a central party acting as an arbiter or aggregator. As seen in §4.3,

each data party can execute different operations in PPML.
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5.2 Stateless Local Executor
In cross-silo PPML, each data party may run a compute cluster. Sequoia deploys stateless local

executors on each host in the cluster to carry out computations and communications.

Lowering for Local Execution. For local computation tasks, Sequoia employs ahead-of-time

(AOT) compilation to execute PPIR. Specifically, XLA (which internally uses MLIR) is used to

lower PPIR, generating optimized machine code for target environments. These machine codes are

dynamically linked back to the Python runtime, enabling them to be cached and directly invoked

in Python.

To execute secure computations, Sequoia invokes the lower-level implementations, such as

SEAL [69], in existing compiling infrastructure through custom calls in XLA [48].

Specialized libraries [13, 56] and domain-specific accelerators [59, 76] can accelerate many secure

computations. Since these optimizations operate in a layer lower than Sequoia (discussion in §8),

their efficiency advantages can be leveraged by Sequoia through the new custom calls to their

implementations, which simplifies the adoption of new secure computation backends.

Data Movement. The local executor provides a columnar format in-memory data store for tasks’

input and output. To minimize communication latency, all tasks read input data from their local

executor’s data store, regardless of their origin. This is accomplished through data push, where the
local executor proactively sends a task’s output data to the destination host where the successor

will be executed. The early placement strategy (§5.1) ensures data destinations are known before

task completion. The destination can be the current host (writing to the local data store) or remote

hosts within or outside the same party (network communication).

Table 2. Effectiveness of Sequoia demonstrated by LoC for accessibility and final accuracy for

fidelity. NVFlare partially supports vertical PPML (non-secured), while TFF and Flower do not

support vertical PPML, and are marked with ×. Baseline final accuracy is the maximum achieved

among all baselines. The reduced % of LoC is over the best baseline.

PPML Setting Model
Lines of Code (LoC) Final Test Accuracy

Sequoia Syft TFF NVFlare OpenFL Flower TFEMPC Sequoia Baselines Centralized

Vertical
LR 10 (-92%) 127 × × 143 × × 81.2% (+0.0) 81.2% 81.2%

CNN 35 (-64%) 98 × 482 120 × × 84.2% (-0.1) 84.3% 84.8%

Horizontal
LR 10 (-64%) 112 182 102 86 130 × 80.8% (+0.1) 80.7% 81.2%

CNN 35 (-72%) 127 230 189 151 136 144 84.8% (+0.4) 84.4% 84.8%

ResNet18 27 (-74%) 104 217 201 147 118 × 89.8% (+0.3) 89.5% 90.3%

6 Implementation
The front-end compiler of Sequoia makes use of JAX [16], which offers a NumPy-like interface that

can serve as a drop-in replacement for NumPy in ML models. JAX enables an effective toolchain

for interpreting and transforming Python programs, with the Sequoia compiler extending the

JAX tracer and 𝑗𝑎𝑥𝑝𝑟 interpreter by approximately 1,600 lines of core code to support the PPML

operators needed for our evaluation, including the binding for C++ libraries [69] but excluding

build scripts.

The back-end executor of Sequoia consists of two components: the cross-party scheduler, which

follows the logic outlined in §5.1, is implemented in native Python with about 950 lines of code; the

local executor employs XLA [63] and MLIR [48] for ahead-of-time (AOT) machine code generation,

as described in §5.2.

We will make the source code of Sequoia available, including the implementation of the PPML

algorithms and the evaluation scripts.
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7 Evaluation
We evaluate Sequoia’s effectiveness and efficiency over five sets of cross-silo PPML algorithms under

vertical and horizontal PPML settings, and compare them to five representation PPML frameworks.

We summarize the key results as follows:

• Effectiveness (§7.2). Sequoia achieves similar final accuracy when compared to the PPML

algorithm implemented with existing frameworks, while requiring 64%-92% fewer lines of code

(LoC) to realize the same PPML computation process.

• Efficiency (§7.3). In the multi-party, single-host-per-party setting, Sequoia outperforms baselines

by up to 88% and 252% in training throughput with up to 16 data parties for horizontal and

vertical PPML, respectively. For the multi-party, multi-host setting, Sequoia achieves near-linear

scalability when scaling up workers within data parties.

7.1 Methodology
Sequoia is designed to enable collaborative training of the same ML model among multiple data

parties (e.g., data owners across organizations), referred to as cross-silo PPML.

Testbed Setup. We conduct our evaluation in a 32-node cluster on AWS, dividing it into up to 16

data parties. The AWS instance type used is c4.4xlarge, and for GPU experiments in §7.4, we use

p3.2xlarge. To simulate the real-world network environment for cross-silo PPML, we place data

parties in four AWS regions across the eastern, central, and western U.S. and connect them to the

same VPN, with an average inter-region round-trip time (RTT) of 57ms.

Baselines. We select five widely adopted PPML frameworks for comparison with Sequoia, as

discussed in §2.3: PySyft [9], TensorFlow Federated (TFF) [11], NVFlare by Nvidia [7], OpenFL

by Intel [25], and Flower [14]. Additionally, TF Encrypted (TFE) [10] serves as an MPC-based

horizontal PPML baseline. For scalability evaluations involving multiple workers in a data party, we

compare Sequoia with itself using a single worker per data party, as the baselines do not support

this configuration.

PPML Algorithms and Datasets.We evaluate Sequoia and baseline frameworks with 6 sets of

PPML algorithms and datasets under vertical or horizontal cross-silo PPML settings (Table 2).

• Horizontal PPML: We use logistic regression (LR), CNN (4 layers), and ResNet18 [36] with secure

aggregation through Federated Averaging (FedAvg) and Homomorphic Encryption (HE) [2, 44].

We also compare the MPC implementation of TFE and Sequoia using CNN using the semi-honest

implementations of the three-party protocol ABY3 [54].

• Vertical PPML: We implement vertical logistic regression (VLR) using HE [74] to exchange

intermediate results, and vertical CNN employs Split Learning [34].
1

In both settings, we use the Fashion-MNIST (FMNIST) dataset for the LR model and CIFAR-10

for the CNN and ResNet models. To synthesize horizontal data distribution, we randomly split

the dataset into 2, 4, 8, and 16 partitions. In vertical settings, we divide the dataset into two parts:

one containing all features and the other containing all labels, arranged in the same order as the

features.

Metrics. Sequoia is evaluated by (1) the effectiveness which includes LoC (representing accessibility)

and final model accuracy (representing fidelity) over different PPML algorithms. (2) its efficiency

including training throughput (sample/s) performance and scalability under the multi-party, multi-

host PPML setting.

1
Vertical learning is rapidly evolving, with new algorithms continually proposed. These vertical learning algorithms are

selected to demonstrate the accessibility of Sequoia.
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Fig. 12. Training thoughput over PPML algorithms and datasets. Sequoia outperforms baselines

by up to 88% and 252% in horizontal and vertical PPML, respectively. The results are reported as

improvement ratio over PySyft as it performs the worst among all baselines. Vertical PPML is only

tested under 2-party setting due to the lack of multi-party vertical PPML algorithm.
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Fig. 13. Scalability as the number of hosts per party grows. Results are reported by the ratio of

improvement over 1 worker per party’s epoch-time performance. Sequoia scales well as the number

of workers grows, see analysis in §7.3.

Through deep dive experiments, we show that Sequoia’s architecture can take advantage of

acceleration brought by communication backends and lower-level compiler stacks, highlighting

Sequoia’s advantage in architectural flexibility.

7.2 Effectiveness of Sequoia
We evaluate Sequoia’s effectiveness, considering its complexity for non-secure experts and its

ability to maintain comparable final test accuracy in PPML-enabled ML training.

Accessibility. Sequoia is designed to be easy to use by ML researchers without requiring

extensive knowledge of secure computation protocols. As shown in Table 2, PPML algorithms

implemented in Sequoia take over 92% less LoC in vertical PPML and 74% less in horizontal PPML.

In both the baseline and Sequoia, data preprocessing and ML model definitions with common

building blocks are not counted in the LoC.

The reduction in LoC with Sequoia is primarily attributable to the reduced complexity achieved

by making secured protocols transparent to users, as opposed to the baseline code which requires

explicit API calls for secure computation in PPML. More specifically, the selection of the PPML

algorithm (vertical, HE-based, and MPC-based horizontal) is configured with a single line of

code (§4.1), alandlowing the rest of the codebase remains unchanged. As a result, the LoC for Sequoia

stay consistent across these algorithms for the same model. In contrast, baseline frameworks like

NVFlare require users to explicitly program control flows for each PPML algorithm. For instance,

the example code [3] demonstrates that users need to utilize 15 internal APIs to set up client-server
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communication, manage weight aggregation, and handle model synchronization across nodes,

requiring additional learning efforts.

Despite the absolute variance in lines of code (LoC) between Sequoia and the baselines is just 100-

300 LoCs, it represents significant differences in usability, such as reduced learning requirements

and enhanced code comprehensibility. Since Sequoia utilizes the API from JAX, ML code—including

model definitions, forward passes, and backward passes—can be directly ported to Sequoia with

minimal adjustments. When developing PPML applications with Sequoia, there are two additional

configurations compared to traditional centralized ML code: selecting a PPML algorithm in the

@ppml decorator and defining data distribution using distributed data types. To migrate from

PyTorch, this article [53] offers a comprehensive overview of the APIs for PyTorch and JAX.

Fidelity. As Sequoia transparently applied the secured computation protocol into the user-

defined ML models, we evaluate the fidelity of the output program by looking at its final model

accuracy. We train the same ML model under a non-PPML, centralized setting to compare. As

reported in Table 2, Sequoia’s fidelity is near-optimal as it achieves the same level of final model

accuracy compared to non-PPML settings, while also outperforming baselines. We make a note that

the differences in accuracy may be inherent in PPML algorithms, such as due to bias in cross-party

data distribution and rounding differences in secured computations.

7.3 Efficiency of Sequoia
We look into Sequoia’s efficiency by evaluating its training throughput and scalability.

Training Throughput. Figure 12 reports Sequoia’s training throughput (samples per second).

The results are reported as an improvement ratio over PySyft as it performs the worst among

all frameworks. Overall, Sequoia outperforms baselines by up to 252% and 88% in vertical and

horizontal PPML, respectively.

In vertical PPML, with more complex cross-parties dependencies, Sequoia’s scheduler prioritizes

computation tasks over others (as introduced in §5.1), to overlap computation with communication.

Additionally, lower-level compiler optimization from XLA is used to maximize the degree of

parallelism in the vertical LR algorithm, which also contributes to Sequoia’s performance shown in

related experiments.

In horizontal PPML, this improvement mostly comes from the lower system and communication

overhead when synchronizing parameters across data parties. For cross-party communications,

Sequoia uses optimized MPI libraries [35] for collective communication while the baseline frame-

work uses RPC or HTTP-based transport that requires data serialization and deserialization. There

is a general trend in horizontal PPML that Sequoia performs better as the number of data parties

grows and the communication overhead becomes more significant.

For MPC-based horizontal ML, we evaluate the semi-honest three-party MPC (3PC) protocol [54],

which is a common MPC protocol for ML. The result shows that Sequoia achieves 1.28x higher

training throughput than TFE by overlapping computation and communication. Since the MPC

protocol does not support scaling, it was not included in scalability experiments.

Intra-party Scalability. Figure 13 shows that Sequoia accelerates intra-party computation by

scaling up workers inside the data parties. The compute nodes within a data party work in the

data-parallel mode and synchronize gradients at the end of each iteration before sharing with other

data parties. Overall, Sequoia achieves near-linear scalability for the intra-party computation.

In vertical PPML, Sequoia achieves 10.83× speedup in the 16-worker (per party) setting. The

intra-party system synchronization overhead is larger than the overhead in the horizontal setting,

because vertical PPML shares the intermediate results more frequently the horizontal PPML.
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Fig. 14. PPIR facilitates integration with existing lower-level compilers. By switching to GPU as

the computation backend, Sequoia achieves 839% speedup over CPU, while also outperforming

NVFlare on GPU by up to 68%.

In horizontal PPML, we evaluate Sequoia under 2, 4, and 8-party settings, with a maximum of 32

workers in total. Sequoia slightly degrades in LR and CNN, as they have fewer model parameters,

making the optimization for communication less significant.

Summary. The efficiency experiment results demonstrate the advantages of Sequoia workflow

compared to baselines, which significantly reduces cross-party coordination overhead for cross-

silo PPML. Furthermore, although Sequoia is not explicitly designed to optimize specific PPML

algorithms, introducing high-level abstractions allows for the integration of ML system optimization

techniques, such as scheduling, and optimizes the execution of PPML by a considerable margin.

7.4 GPU Experiments
As previously discussed in §3, the use of PPIR and a compiler-executor architecture allows for easy

integration with existing lower-level compilers, enabling the generation of optimized executables

on the target platform. Sequoia has the potential to improve efficiency even further by leveraging

specialized hardware accelerators for PPML operations.

To show the extensibility of Sequoia’s compiler-executor architecture, we switch out the target

platform in XLA to use GPU as the computation backend, and switch to MPI4JAX [35] as the

communication backend in the horizontal CNN experiment. As shown in Figure 14, Sequoia

achieves up to 839% speedup over CPU and the scalability downgrades gracefully, while also

outperforming NVFlare on GPU by up to 68%. NVFlare’s centralized, job-submission workflow

leads to more significant synchronization overhead, as using GPU for computation increases the

relative ratio of communication.

8 Related Work and Discussions
Prior PPML frameworks are discussed in §2. In this section, we discuss other optimizations for

privacy-preserving computations and their relations to Sequoia.

Optimizations for Homomorphic Encryption (HE) and Multi-Party Computation (MPC).
HE and MPC compilers mainly focus on two optimization directions:

1. Computation optimizations such as operator fusion and auto parallelization for specific op-

erators [17, 19, 31, 56, 58]. For example, HEaaN.MLIR [56] optimizes specific HE operators with

more efficient arithmetic algorithms and automated parallelization. These optimizations operate at

a layer below Sequoia’s compiler and can be seamlessly linked to Sequoia, as discussed in §5.2. For

example, HEaaN.MLIR [56] is part of the MLIR compiler infrastructure used by Sequoia to execute

PPIR.

2.New programming abstractions that transparently uses existing secure computation libraries [20,

22, 52, 70]. For example, EVA [22] introduces a high-level FHE language and performs operator-

level reorganization that automatically inserts relinearization and rescaling operations to generate
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correct FHE programs. SecretFlow [52] transforms the user’s ML model, but its transformation

capability limits to operator transformation in ML and MPC, limiting its adaptability to other

complex workflows in PPML algorithm. Sequoia’s compiler uses abstract evaluation to achieve

transparent and extensible transformations, avoiding adding another layer of abstraction.

Domain Specific Accelerators for Privacy-Preserving Computations. DSA is an emerging

research area that explores hardware accelerators, such as FPGAs and ASICs, to boost the perfor-

mance of secure computation workloads, which suffer from over a 60× slowdown [76] in end-to-end
performance compared to plaintext computation [59, 66, 67, 76]. HEAX [59] is a hardware archi-

tecture that accelerates number-theoretic transform, a fundamental building block for FHE, with

multiple levels of parallelism. FLASH [76] is an FPGA hardware accelerator for cross-silo PPML.

It optimizes nine cryptographic operations (including HE and RSA) which are widely used in

cross-silo PPML algorithms.

Sequoia facilitates the integration of accelerators into PPML frameworks without altering user

applications. In §5.2, we explain that Sequoia’s executor converts PPIR tomachine code for execution

on the target platform. As custom PPIR operations have lower-level implementations, hardware

accelerators can be called for these operations when possible.

9 Limitations

Implementation and Validation of PPML Algorithm. The Sequoia compiler is designed to be

extensible, allowing users to add new PPML algorithms as transformation policies. However, we

acknowledge that implementing new PPML algorithms requires specialized expertise in secure

computation protocols and PPML techniques. Furthermore, validating the correctness and efficiency

of these algorithms also depends on the user’s technical expertise. It is an interesting future work

to explore methods that automate the generation and validation of transformation policies for new

PPML algorithms.

Support of Large Models. Newer, larger models with complex architectures, incorporating ad-

vanced training paradigms and optimizations (e.g., FSDP [77] and FlashAttention [21]), require

specialized GPU operations and sophisticated computation and communication scheduling. While

basic transformer models can run on JAX and therefore on Sequoia, their most efficient imple-

mentations may not be directly compatible with Sequoia without additional development. This

limitation arises from two primary factors:

ML operators that rely on custom CUDA kernels and enforce more refined GPU memory man-

agement are not fully supported by JAX, and therefore not by Sequoia. Advanced parallelization

strategies require manual implementation with newer APIs in JAX, which may not be fully com-

patible with Sequoia’s compiler. It is also worth noting that large models are often pretrained on

substantial amounts of public data, and recent research has addressed privacy concerns for these

models from perspectives beyond distributed data ownership, such as prompt security and personal

data leakage. These issues are distinct from the distributed data scenarios addressed in this paper

and are typically handled at the ML algorithm level, outside of frameworks like PyTorch, JAX, or

Sequoia.

10 Conclusion
This paper proposes Sequoia, a novel PPML framework that decouples ML models and secure

protocols. Sequoia offers JAX-compatible APIs for users to program their ML models, and automat-

ically apply PPML algorithms for execution over distributed data to improve the accessibility and

performance of PPML applications.
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