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Abstract

Elastic computing enables dynamic scaling to meet work-
load demands, and Remote Direct Memory Access (RDMA)
enhances this by providing high-throughput, low-latency net-
work communication. However, integrating RDMA into elas-
tic computing remains a challenge, particularly in control
plane operations for RDMA connection setup.

This paper revisits the assumptions of prior work on high-
performance RDMA for elastic computing, and reveals that
extreme microsecond-level control plane optimizations are
often unnecessary. By challenging the conventional beliefs
on the slowness of user-space RDMA control plane and the
difficulty of user-space RDMA resource sharing, we uncover
new design opportunities. Our key insight is that user-space
RDMA connection setup can be significantly improved with
caching, while RDMA resources can be efficiently shared
among processes using fork. In light of this, we propose
Swift, a simple yet effective solution that co-designs RDMA
with a serverless framework to optimize performance for elas-
tic computing. At its very core, Swift handles cold and warm
serverless requests by swiftly initializing the RDMA con-
trol plane with cache-optimized libibverbs, and manages
fork requests by leveraging the RDMA’s fork capability. Im-
plemented with OpenWhisk, Swift delivers 30.56−46.50%
higher average throughput and 18.55−37.21% lower latency,
at a cost of 6.5% control plane overhead, compared to prior
solutions.

1 Introduction
Elastic computing has revolutionized how computing re-
sources are allocated and utilized, allowing for dynamic scal-
ing to meet varying workload demands [5, 7, 10, 13, 31, 34].
This paradigm, particularly in serverless computing, offers
significant advantages in performance and cost efficiency by
scaling resources up or down as needed. Serverless platforms
like AWS Lambda [3] enable developers to deploy and run
code without managing the underlying infrastructure, provid-
ing automatic scaling in response to incoming requests or
events.

Remote Direct Memory Access (RDMA) is a key tech-
nology for enhancing applications running on elastic com-
puting platforms by providing high-throughput, low-latency
network communication [12, 25]. By allowing direct memory

access between servers without involving the operating sys-
tem, RDMA reduces CPU overhead and achieves ultra-fast
data transfer speeds. These features make RDMA an ideal
choice for applications requiring efficient data exchange, such
as key-value stores, transaction processing, and large-scale
AI training.

However, adopting RDMA in the elastic computing envi-
ronments poses challenges, particularly in the control plane
operations involved in setting up and maintaining RDMA con-
nections [13, 30]. For long-lived applications, RDMA control
plane overhead is amortized over extended periods. How-
ever, in elastic computing, where tasks are short-lived and
frequently started or stopped, control plane setup becomes
a critical performance bottleneck because the control plane
needs to be reinitialized each time a task restarts . Previous
solutions, like KRCore [30], have introduced kernel-space
mechanisms to mitigate these issues. KRCore’s approach
maintains a pool of pre-established queue pairs in kernel
space, allowing tasks to share these connections and elimi-
nate the need for time-consuming setup procedures. While
this method is effective, it comes with drawbacks: the inter-
action between user-space and kernel-space through system
calls leads to significant data plane performance loss, and the
reliance on kernel-space introduces compatibility issues and
security risks

In this paper, we revisit the assumptions and design spaces
of previous works on high-performance RDMA for elastic
computing. We begin by analyzing the time scales required
for various task startup scenarios—cold start, warm start, and
fork start—and demonstrate that extreme microsecond-level
control plane optimizations are often unnecessary. We then
challenge two key assumptions from earlier research: (1) user-
space RDMA control plane is slow and typically takes 16-34
milliseconds for connection setup [13,30] and (2) it is difficult
to share RDMA resources in the user-space [30].

Our analysis reveals that user-space RDMA connection
setup times can be drastically reduced through optimiza-
tions. By implementing caching mechanisms for frequently
accessed internal functions for libibverbs, we achieve sub-
stantial performance improvements. For instance, our opti-
mizations reduce the ibv_open_device API call time from
22.9 milliseconds to 2.18 milliseconds—a more than 10×
improvement. Furthermore, we demonstrate that user-space
RDMA resources can be efficiently shared among processes
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using the fork feature, aligning with the fork-based design of
elastic computing for ultra-fast task startup. Breaking these
conventional beliefs opens new opportunities of leveraging
user-space RDMA to design high-performance RDMA for
elastic computing.

To this end, we propose Swift, a simple yet effective sys-
tem that co-designs RDMA with a serverless framework to
meet the performance demands of elastic computing. For cold
and warm task startup scenarios, Swift leverages the opti-
mized libibverbs to swiftly initialize the RDMA control
plane with minimal overhead. For fork-based task startup
scenarios, Swift utilizes RDMA’s fork capability with pre-
connected RC queue pairs to achieve low-latency communica-
tion. Moreover, Swift delivers compelling performance for
different use cases in elastic computing while not comprising
security requirements and achieving robust compatibility.

We implement Swift with OpenWhisk [4] and evaluate the
performance of Swift in terms of Swift’ libibverbs, con-
trol plane, and data plane. The evaluation results show that: (1)
Compared to unmodified libibverbs, Swift ’s optimized
libibverbs achieves a 10× performance improvement in
the RDMA control plane. (2) Compared to previous kernel-
based solutions like KRCore, Swift achieves similar perfor-
mance, with a deficiency of within 5% in the RDMA control
plane across all task startup scenarios. (3) In the RDMA data
plane, Swift significantly outperforms kernel-based meth-
ods, achieving 30.56− 46.50% higher average throughput
and 18.55−37.21% lower latency. (4) Unlike kernel-space
solutions that are bound to specific kernel versions, Swift
demonstrates good compatibility and can function properly
with different Linux kernel versions. These evaluation re-
sults highlight that by challenging conventional assumptions,
Swift provides a simple yet highly effective solution: despite
up to 6.5% performance degradation in the RDMA control
plane, it significantly improves data plane performance and
compatibility.

Key Takeaways for the Community: We hope this paper
will inspire the community in the following ways:

• Clarifying the Requirements of RDMA for Elastic Com-
puting: To identify the necessary optimizations for en-
abling RDMA in elastic computing, we perform a compre-
hensive requirements analysis. By examining the appro-
priate time scales for various startup scenarios, we inform
that microsecond-level optimization of the RDMA control
plane is often unnecessary.

• Challenging Conventional Beliefs on RDMA Control
Plane Overhead: We challenge long-held assumptions
that the RDMA control plane is inherently slow and that
user-space resources are difficult to share. By optimiz-
ing the performance of libibverbs by more than 10×,
yielding immediate benefits to our community, and en-
abling simple sharing of RDMA resources through fork,
we demonstrate new opportunities for high-performance

RDMA in elastic computing.

• A Simple Yet Effective Solution: Based on these obser-
vations, we propose Swift, a straightforward yet effective
solution co-designed with a serverless framework. We be-
lieve Swift can inspire the community to develop more
systems that leverage similar insights.

2 Background

2.1 Elastic Computing
Elastic computing is a paradigm in which computing re-
sources are dynamically adjusted to match current work-
load demands, ensuring optimal performance and cost effi-
ciency [2, 9]. It allows systems to scale resources up or down
as needed, avoiding the inefficiencies of over-provisioning
and underutilization.

One of the most widely adopted forms of elastic comput-
ing is serverless computing, also known as Function-as-a-
Service (FaaS) [5, 7, 10, 13, 31, 34]. Serverless computing en-
ables developers to deploy and run code without managing the
underlying infrastructure, with automatic scaling in response
to incoming requests or events. This model is particularly
efficient for applications with unpredictable or highly variable
workloads. Serverless platforms, such as AWS Lambda [3], of-
fer an event-driven architecture where functions are triggered
by specific events like HTTP requests or database changes.

A key advantage of serverless computing is its fast task
launch time. When a serverless function is invoked for the first
time or after a period of inactivity (i.e., cold start), the plat-
form needs to launch a container from scratch. Even in such
cases, the task launch time is only several hundred millisec-
onds to a few seconds [10], which is significantly faster than
launching a virtual machine. In contrast, if the function is in-
voked shortly after a previous invocation (i.e., warm start), the
task launch time can be as fast as tens of milliseconds. Recent
research has leveraged techniques such as fork to accelerate
task launches even further by forking and reusing an existing
process, achieving launch times of several milliseconds [31]
or even sub-milliseconds [7] (i.e., fork start).

2.2 RDMA
Remote Direct Memory Access (RDMA) is a technology
that allows direct memory access from the memory of one
server into that of a remote one without involving the op-
erating system (OS) of either servers, i.e., kernel bypassing.
RDMA’s ability to bypass the kernel significantly reduces
CPU overhead, leading to ultra high throughput of up to
400Gbps and low latency of a few microseconds. RDMA
has been widely adopted in various workloads, such as key-
value cache [29], transaction processing [17], large-scale AI
training [16], etc. Two major protocols that implement RDMA
are InfiniBand [25] and RDMA over Converged Ethernet (Ro-
CEv2) [12].
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Control Plane: The RDMA control plane is responsi-
ble for managing the setup and maintenance of RDMA
connections. This includes tasks such as connection es-
tablishment, resource allocation, and configuration. Con-
trol plane operations are crucial for initializing RDMA
communications but can introduce significant overhead,
particularly in dynamic environments like elastic comput-
ing. For instance, the Verbs APIs from the user-space
libibverbs library, such as ibv_open_device (device
open) and ibv_create_qp (queue pair creation) involve mul-
tiple system calls with the OS kernel1, leading to latency that
can affect overall performance. Typical connection establish-
ment times can range from around 15 milliseconds [30] to 35
milliseconds [13], which can be a bottleneck in environments
with connection setup on the critical path. We will discuss
more about the problem in §2.3.

Data Plane: The RDMA data plane handles the actual data
transfer between nodes once the connections are established.
This plane is where RDMA’s key advantages are most evi-
dent, including direct memory access, low latency, and high
throughput. Data plane operations bypass the operating sys-
tem, allowing applications to read and write directly to the
memory of remote nodes with minimal delay. The Verbs APIs
from the libibverbs library2, such as ibv_post_send for
posting a send work request and ibv_post_recv for posting
a receive work request, enable efficient data movement with
very low CPU overhead.

Kernel-space RDMA: While the common usage of RDMA
lies in the user-space, the RDMA has been integrated into
the kernel. The motivation for kernel space RDMA was to
integrate RDMA capabilities directly into existing kernel sub-
systems and protocols, optimizing kernel tasks such as file
systems, distributed storage, and network services. This in-
tegration avoids the overhead of context switching between
user and kernel space, allowing for more efficient and secure
handling of networking tasks. Key APIs for kernel space
RDMA, available in the ib_core kernel module [32], in-
clude ib_register_device3 for registering RDMA devices,
ib_create_qp for creating queue pairs, ib_post_send for
posting send work requests, etc. These APIs enable seamless,
high-performance communication within the kernel, enhanc-
ing the efficiency of system-level applications that rely on fast
data transfer and low-latency networking.

2.3 Performance Mismatches in RDMA for
Elastic Computing

Using RDMA in elastic computing has emerged as a promis-
ing solution [18, 30], providing high-throughput and low-
latency communication essential for dynamic and scalable

1The RDMA kernel-bypass feature only applies to data plane operations.
2https://github.com/linux-rdma/rdma-core
3Kernel-space RDMA APIs are with a prefix of ib_ while user-space

ones are with ibv_.
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Figure 1: Critical Path of RDMA in Elastic Computing:
Unlike conventional RDMA use cases, elastic computing
demands RDMA control plane setup each time a task is
launched.

computing environment. Please note, in this paper, we fo-
cus on how to efficiently utilize RDMA in elastic computing,
which is orthogonal to research efforts aimed at enabling effi-
cient overlay networking for containerized RDMA [15, 18].

RDMA’s application in elastic computing differs from its
use in long-lived applications such as web servers or dis-
tributed databases. In long-lived applications, the overhead
of RDMA control plane setup, such as open RDMA device,
register memory region, connection setup, etc., is amortized
over extended periods of continuous data transfer, rendering
it negligible. In contrast, elastic computing environments, par-
ticularly serverless computing, involve short-lived, rapidly
scaling tasks that frequently start and stop. This frequent ini-
tiation and termination of tasks make the control plane setup
time a critical performance factor, as it can significantly im-
pact the overall efficiency and responsiveness of the system.

Figure 1 illustrates the critical path of using RDMA in
elastic computing, including three key stages: 1 task launch,
2 RDMA RDMA control plane setup setup, and 3 data

exchange. To understand the performance impact of RDMA
control plane setup , we consider three scenarios: (1) cold
start serverless tasks and other applications, (2) warm start
serverless tasks, and (3) fork start serverless tasks. We will
then summarize how the RDMA control plane affects overall
performance in these scenarios.
Cold Start Serverless and Other Applications: In cold start
and other non-serverless applications, the task launch time 1
varies from several hundred milliseconds to several seconds,
as it requires launching a container from scratch. While the
RDMA control plane setup time 2 typically adds around
16-34 milliseconds of overhead (as reported in [13, 30]), this
is relatively minor compared to the total task launch time.
The duration of data exchange 3 varies from several mi-
croseconds to milliseconds, depending on the amount of data
being transferred. For certain serverless applications, such
as key-value storage, which involve small data sizes, tasks
are usually completed within microseconds. Consequently,
the RDMA control plane setup time has minimal impact on
overall performance in the cold start scenario.
Warm Start Serverless Applications: In warm task startup
cases, a container is reused to eliminate the overhead of
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launching a new container. A new process is launched within
this container, resulting in a task launch time 1 typically
under 50 milliseconds. As a result, the RDMA control plane
setup time 2 of 16-34 milliseconds becomes a substantial
portion of the total time in this case. This significant overhead
reduces the benefits of both RDMA and serverless computing,
as the RDMA setup time hinders the quick responsiveness
that warm starts aim to provide.
Fork Start Serverless Applications: In fork start scenar-
ios, a process is forked to handle the new request, further
eliminating the process launch overhead present in the warm
task startup scenario. Therefore, the task launch time 1 is
sub-millisecond to a few milliseconds (only very simple ap-
plications can achieve sub-millisecond launch times). The
RDMA control plane setup time 2 of 16-34 milliseconds is
disproportionately high in this context. This overhead severely
impacts the performance advantages of hot starts, making the
RDMA setup a critical bottleneck that undermines the low-
latency benefits of serverless computing.

2.4 Previous Solution
To address the performance disparity between RDMA and
elastic computing, KRCore introduces a kernel-space RDMA
sharing mechanism [30]. This mechanism maintains a pool
of pre-established queue pairs in kernel space, allowing elas-
tic computing tasks to leverage these queue pairs directly,
thereby eliminating the need for time-consuming connection
setup procedures. Additionally, KRCore utilizes Dynamically
Connected Transport (DCT) [22], reducing the connection
setup time to just a few microseconds when kernel-space
queue pairs are unavailable for sharing. Consequently, the
RDMA control plane overhead in KRCore is typically just a
few microseconds. Although promising, KRCore suffers from
several inevitable drawbacks, posing trade-offs for enabling
high-performance RDMA for elastic computing:

• Data plane performance loss. When user-space processes
utilize queue pairs within kernel space for data exchange,
system calls become necessary, forfeiting the kernel-bypass
advantage of RDMA. As highlighted in the KRCore paper,
this interaction between user-space and kernel-space can
result in a significant performance drop of up to 75% in
the RDMA data plane.

• Compatibility issues. The kernel-space method requires
specific kernel functions to be viable, which may not func-
tion properly with different kernel versions. For example,
KRCore can only be installed on Kernel version 4.15.0-
46-generic and does not work on the default Ubuntu 18.04
kernel version 4.15.0-213-generic, even though the two
kernel versions have very minor differences.

• Security vulnerabilities. Utilizing a kernel-space solution
also introduces security vulnerabilities, as any improper
actions can potentially trigger a kernel crash.

Facing such trade-offs, we ask a question: Is kernel-space
shared RDMA the right solution for elastic computing? To
answer this question, this paper first revisits the assumptions
and design spaces leveraged in previous works and then break
these long-held assumptions, leading to new design opportu-
nities.

3 Revisiting RDMA for Elastic Computing
This section critically revisits assumptions and design spaces
from previous works on high-performance RDMA for elastic
computing. We will first introduce the appropriate time scales
for cold, warm, and fork starts to demonstrate that the extreme
microsecond-level RDMA control plane optimizations pro-
posed by prior studies [30] are unnecessary (§3.1). Next, we
will challenge two key assumptions from earlier research: the
slowness of the user-space RDMA control plane (§3.3) and
the difficulty of sharing user-space RDMA (§3.4). Finally,
we will summarize new opportunities to utilizes user-space
RDMA to solve the performance disparity in elastic comput-
ing (§3.5).

3.1 Revisiting Application Requirements
The performance of the RDMA control plane is crucial in
determining the efficiency of elastic computing environments.
However, it is essential to note that the RDMA control plane
overhead does not necessarily degrade end-to-end perfor-
mance significantly if its time scale is considerablely less
than the task launch overhead. This insight shifts the focus
from achieving ultra-low latencies to ensuring that the RDMA
control plane operates within acceptable time scales relative
to the task launch overhead.

From the analysis in §2.3, we have the following observa-
tions:

• For cold task startup scenarios and other non-serverless
applications, the existing RDMA control plane is already a
suitable solution since the extra overhead can be ignored
due to the long task startup time.

• For warm task startup scenarios, an RDMA control plane
overhead of several milliseconds is required, making the
overhead impact less than 5% of the overall performance.

• For fork-based task startup scenarios, the RDMA control
plane overhead should be less than 100µs, making the over-
head impact less than 5% of the overall performance.

Moreover, initializing the code environment, such as set-
ting up a Python runtime, inherently requires a non-negligible
amount of time [1]. This process includes loading necessary
libraries, configuring the environment, and preparing the exe-
cution context. If the RDMA connection setup is effectively
pipelined with the initialization of the code environment, the
overhead introduced by the control plane can be masked,
further mitigating the end-to-end performance degradation
brought by RDMA control plane.
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Summary: Aligning the RDMA control plane overhead
with the specific requirements of different startup scenarios is
crucial for optimizing performance in elastic computing envi-
ronments. For warm task startups, an RDMA control plane
setup overhead of several milliseconds is sufficient to ensure
smooth and efficient task execution without becoming a per-
formance bottleneck. Conversely, fork starts, which demand
extremely fast task launches, necessitate an RDMA control
plane overhead of less than 100µs.

3.2 Revisiting Previous Assumptions
An intuitive solution is that if RDMA connection setup is as
fast as several microseconds, it would meet the requirements
for warm starts, where an overhead of several milliseconds
is sufficient. Additionally, if these RDMA connections can
be shared between processes to support fork-based task starts,
which require sub-millisecond overheads, a user-space solu-
tion becomes feasible. This simple-yet-effective approach
would circumvent the significant drawbacks of KRCore, such
as up to 75% data plane performance loss, low compatibility
issues, and the inherent risks of kernel crashes. By leveraging
user-space RDMA, we can achieve high performance RDMA
data plane while maintaining system stability and efficiency.

However, two entrenched assumptions have hindered this
idea from being realized:
Assumption 1: User-space RDMA control plane setup time
is long. It is believed that the control plane setup requires be-
tween 16 to 34 ms [13, 30], making it unsuitable for the rapid
startup times required in elastic computing environments, par-
ticular in the warm and fork task startup cases.
Assumption 2: User-space RDMA is difficult to share. Sev-
eral previous works have pointed out that it is difficult to share
RDMA resources among processes [27, 30], leading to either
a kernel-based solution or taking long time to establish a new
connection.

These assumptions have led to a preference for more com-
plex kernel-space solutions, despite their associated risks and
performance penalties. In the following sections, we will chal-
lenge these assumptions with empirical evidence and modern
techniques, demonstrating that a user-space solution is not
only viable but also advantageous for optimizing performance
in elastic computing.

3.3 Why Is User-space RDMA Control Plane
Slow?

As discussed earlier, several studies have highlighted that the
setup time for the RDMA control plane—including work-
flows such as opening the RDMA device, registering memory
regions, and establishing connections, etc.— is significantly
slow in user space [13, 30]. To better understand this issue,
we reproduced the experiments on our testbed (refer to §5.1
for details on experiment settings).

Figure 2 presents a detailed breakdown of the libibverbs
workflow during RDMA control plane setup, encompassing
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Figure 2: Workflow of libibverbs API calls during RDMA
control plane setup, along with their execution times in both
user space and kernel space.
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Cache

<func1, ret>
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…
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Runtime
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Figure 3: Workflow of proposed caching mechanism.

both user-space and kernel-space operations. In this workflow,
the user-space component is primarily responsible for initial
parameter configuration, preliminary checks, and other non-
critical tasks. In contrast, the kernel-space component handles
critical operations, such as device initialization, resource allo-
cation, and communication channel setup.

The results illustrate the time consumed in each space.
These findings are consistent with prior research [30], and we
further verify that the handshake time is negligible, confirming
it can be safely ignored in performance evaluations.
Observation: Our experiments indicate that a significant
portion of the time consumed by libibverbs APIs occurs
in user-space (23.4 out of 26.5ms) , which presents a sub-
stantial opportunity for optimization. Specifically, for the
ibv_open_device API, over 80% of the total execution time
is spent in user-space. This is particularly notable because
user-space operations primarily involve reading environment
parameters or fetching information from kernel space. Many
of these internal functions within the APIs tend to return con-
sistent values across multiple calls. Therefore, implementing
caching mechanisms for these repeated results can substan-
tially reduce the overhead.
Optimization: Figure 3 illustrates the overall mechanism of
a cache-based optimization for libibverbs. Specifically, we
design a profiler to automatically evaluate the return values
of various internal functions in libibverbs using a diverse
set of tools, including eBPF [11], perf [6], etc., along with
artificial code modifications. The profiler executes the critical
APIs listed in Figure 2 with random combinations and orders
to identify function calls that consistently return the same
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value. These results are then stored in a cached map, where
the function name serves as the key and the return value as the
corresponding value. Since libibverbs is typically installed
on the host and shared among all containers, we utilize a
single cached map per host. After profiling, we generate an
optimized version of libibverbs in which all function calls
present in the cache are replaced with direct return logic
that retrieves the cached value. This cache-based profiling
mechanism can run periodically or be triggered by errors
encountered while using the optimized libibverbs.

Notable Findings: We have detected one internal function
named mlx5_is_sandy_bridge. As its name implies, this
function will always return 0 on a modern CPU since In-
tel Sandy Bridge CPUs were launched in 2011, which has
been more than a decade ago. This function has been in the
libibverbs library for 11 years! Nevertheless, this function
call introduces significant overhead, i.e., more than 90%, in
ibv_open_device due to its per-core checking logic. With
our cache mechanism, the mlx5_is_sandy_bridge function
call can return 0 without performing an actual check, thereby
reducing overhead.
Conclusion: User-space RDMA connection can be as fast
as only several milliseconds. After applying our caching-
based optimization, the performance of libibverbs APIs has
significantly improved. For ibv_open_device, we achieved
a more than 10× performance boost, reducing the time to
2180µs. Consequently, the overall RDMA control plane setup
time on our testbed is now approximately 2.5ms (more results
are in §5.2), which should be feasible for both cold and warm
task startup scenarios.

3.4 Is User-space RDMA Difficult to Share?
Previous work [30] has discussed why user-space RDMA
connections are difficult to share: each user-space application
has its own exclusive driver data structures and dedicated
hardware resources associated with the RDMA connection.
In contrast, the kernel is shared by all applications.

However, we point out that since the driver data structures
and dedicated hardware resources actually reside in the kernel
space, they should be feasible to share. Following this initia-
tive, we explored a less-studied yet well-supported RDMA
feature—fork. The parent RDMA process can use the sys-
tem call fork to create a child process that shares the RDMA
connection or other resources of the parent process.

Conventional fork uses a copy-on-write strategy to avoid
the unnecessary overhead of creating a new process. Since
RDMA bypasses the kernel, such a strategy can cause incor-
rect memory operations, e.g., a message sent to the child may
be incorrectly written to the memory region owned by the
parent process. The modern Linux kernel4 has enabled the
copy-on-fork primitive for RDMA to avoid such issues, albeit
with extra overhead.

4Since 5.9.0-rc7. API call ibv_fork_init can be used to enable copy-
on-fork in early kernel versions to avoid the problem.

To quantify this overhead, we compared the time difference
when forking a normal process versus a process that estab-
lished RDMA queue pairs. The experimental results show
that copy-on-fork only introduces approximately 100µs of
extra overhead (more results are in §5.3).

As previously discussed, the optimized libibverbs can
adequately handle cold and warm task startup scenarios. The
remaining challenge is the fork-based task startup. However,
fork-based task startup naturally involves using the fork sys-
tem call, which is well-suited for sharing RDMA resources.
Conclusion: User-space RDMA resources can be shared
using fork. Such method also aligns with scenarios requir-
ing extremely fast RDMA connection setup times, i.e., fork
start serverless applications. Moreover, our experiment re-
sults suggest that the extra latency introduced also meets our
requirement analysis in §3.1.

3.5 New Opportunities
After breaking the two long-held assumptions, we can lever-
age user-space RDMA for elastic computing, which fits differ-
ent task startup scenarios without compromising data plane
performance or introducing compatibility and security is-
sues. Specifically, we can utilize the optimized libibverbs
for warm start serverless applications and employ fork with
RDMA for fork start applications. This approach ensures that
the RDMA control plane causes imperceptible overhead for
all scenarios.

4 Swift
Leveraging the new opportunities, we propose Swift, a sim-
ple yet effective solution that co-designs RDMA with a server-
less framework. In this paper, we design Swift as a simple yet
effective solution to demonstrate that RDMA can effectively
meet the performance requirements of elastic computing with-
out a sophisticated design. In the following sections, we will
first introduce the workflow of Swift (§4.1) and then dis-
cuss some detailed design choices, such as its difference with
RDMA overlay networking solutions and some security con-
cerns. (§4.2). Finally, we introduce the implementation of
Swift (§4.3).

4.1 Workflow
The overall workflow of Swift is illustrated in Figure 4.
Swift employs a scheduler to handle new requests, adhering
to the design principles of serverless frameworks like Open-
Whisk [4], Fission [8], etc., to reuse containers to reduce the
task startup overhead. Specifically, if a request requires a con-
tainer that is not currently available, Swift will launch a new
container to handle the request, i.e., cold start (blue line in Fig-
ure 4) . Conversely, if the requested container exists, Swift
will directly route the request to the same container. Based
on the latency requirements of different scenarios, Swift will
launch a new process in the container, i.e., warm start (red
line) , or directly fork the process, i.e., fork start (green line) ,
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Figure 4: Workflow of Swift. The workflow of each request
is marked with a different color.

to handle the requests. Please note, as conventional serverless
computing, we only use containers for requests that belong
to the container owner for security concern (more details in
§4.2).

In the following section, we will delve into how Swift
handles these scenarios.

4.1.1 Swift APIs

We first introduce how users can interact with Swift through
its APIs. To facilitate a low-overhead RDMA control plane,
we delegate part of the control plane in Swift without requir-
ing users to manage it entirely.

Our API style is similar to that of AWS Lambda [3], as
shown in Listing 1. We provide a handler interface where
Swift users can write their program logic. For RDMA op-
erations, we eliminate the need for users to explicitly create
device contexts, protected regions, and queue pairs. Instead,
we pass references to these components in the context. This
way, users can access these components in their code to lever-
age RDMA for high-performance communications.

Additionally, we pre-allocate a memory region of 32KB,
which can be accessed via context as well. We chose this
size because most serverless frameworks restrict communica-
tion message sizes and achieve the best performance within
this limit [33]. For instance, in AWS Lambda, if the message
exceeds 32KB, the serverless framework utilizes persistent
storage to transmit the message. If Swift users require a
larger memory region for more extensive message transfers,
they can create and register it in their code since they can
access the protected domain object via context.

Listing 1: Swift API

1 def handler(event, context):
2 pd = context.pd # Obtain the created PD
3 mr = context.mr # Obtain the pinned memory
4 qps = context.qps # Obtain the created QPs
5 qp = qps[0]
6 # Do something with the QP
7 return some_value

4.1.2 Cold Start & Warm Start
During cold start, Swift directly launches a container using
docker run command and simultaneously starts an INIT
process. In contrast, while in warm start, Swift executes the
INIT process on an existing container using docker exec
command. While conventional serverless frameworks dele-
gate runtime initialization tasks, such as importing Python
packages in the INIT process. To avoid these initialization
tasks from blocking the RDMA control plane setup, Swift
initializes the RDMA control plane within the INIT process
but further employs multi-threading to conceal the overhead
of RDMA control plane setup behind other initialization tasks.

Specifically, the INIT process opens RDMA devices,
establishes protected domains, registers memory regions,
and allocates queue pairs. Swift leverages the optimized
libibverbs library for efficient RDMA control plane estab-
lishment. By default, Swift uses Reliable Connected (RC)
QPs due to its high-performance and simplicity. Swift re-
quires users to pass the address (gid) of the remote endpoint
to pre-establish the queue pairs, masking the extra latency of
using ibv_modify_qp and thus mitigating the RDMA control
plane overhead.

After the INIT process completes initialization, it directly
invokes the user handler without creating a new process. To
prevent the user handler from blocking the INIT process,
the INIT process also launches a new thread to handle new
fork requests, which will be introduced in the next section.
Since multiple INIT process may exist due to the warm start,
Swift records all the established connections within these
INIT process in a centralized table Orchestrator Table on the
orchestrator (the left table in Figure 5).

4.1.3 Fork Start
When Swift receives a fork start request (Step 1 in Fig-
ure 5), it first queries the Orchestrator Table that records all
established connections and then selects a process that already
contains the required connection, if possible. If the INIT pro-
cess has not set up the required connection, Swift will use
the unassigned QPs to establish the connection (details pro-
vided later). Swift then forks the INIT process and delegates
the child process to handle the request. This allows parallel
request execution, avoiding the extra latency of waiting for
an existing request to finish (Step 2 in Figure 5).

Since the INIT process owns all RDMA control plane re-
sources, it must correctly assign resources to the child pro-
cesses. As the device context and protected domain can be
safely shared among all processes, Swift does not employ
any special mechanism for these. However, for QPs, Swift
must track which child process is using which QP. To achieve
this, Swift uses two vector tables. One table named QP Table
maintains pointers to the QP objects, with the index of the
vector table serving as the QP ID (the right table in Figure 5).
The second table named Assignment Table records the child
process ID and destination if the connection is already estab-
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Figure 5: Relationship of tables used in Swift.

lished, also using the index as the QP ID (the middle table
in Figure 5). When a new request arrives, the INIT process
iterates through the Assignment Table to find the first empty
entry (or entries), indicating an unassigned QP(s), and further
picks an entry or entries with the same destinations if pos-
sible. If no QP has the required destination, Swift picks an
unassigned QP to establish the connection and updates the
table. Then Swift uses the QP Table to locate the QP (Step
3 in Figure 5). After a child process finishes, Swift sets the

child process ID to be unassigned in the Assignment Table.
Because these operations on the two tables are performed

solely by the INIT process, there is no need for a locking
mechanism. Additionally, the INIT process monitors the num-
ber of unassigned QPs and creates more QPs if the number
falls below a threshold. This ensures that Swift always has
an adequate number of QPs available to maintain high perfor-
mance.

4.1.4 Termination
For simplicity, Swift does not actively close any QP connec-
tions. When the serverless framework decides to terminate a
container, Swift closes all associated QPs at once. Further-
more, the orchestrator updates its Orchestrator Table if a con-
tainer is terminated. Since serverless containers are usually
short-lived, our method does not pose a significant resource
wastage.

4.2 Discussion
In this section, we discuss some design decisions of Swift.
RC vs. DCT: Swift leverages Reliable Connection (RC) in-
stead of Dynamic Connected Transport (DCT) as the default
QP type. DCT can dynamically create and destroy connec-
tions between any pair of QPs, enabling efficient one-to-many
reliable communication. The advantages of using DCT are
two-fold: (1) For one-to-many communication, DCT reduces
the total number of QPs, thereby decreasing the required mem-
ory footprint. (2) Dynamic connection setup allows reusing an
existing QP, eliminating the overhead of creating new queue
pairs. However, we find that Swift does not significantly
benefit from these advantages. The reasons are: (1) Since
Swift primarily operates in user space, memory usage is
less restricted compared to the kernel, which imposes strict
structural requirements on memory management. Therefore,

Swift does not benefit from DCT’s low memory footprint
feature. Furthermore, previous works have pointed out that
the memory bottleneck of RDMA resides in the RNIC rather
than host memory [28]. (2) In Swift ’s design, QP creation
can be handled in the INIT process, which does not impact
the performance of the critical path.

Moreover, using DCT introduces some downsides that we
want to avoid: (1) DCT causes cache misses and involves
re-connection overhead. As reported by previous works, DCT
can result in up to a 55.3% performance degradation com-
pared to RC [17]. (2) DCT involves additional programming
complexities and compatibility issues. Specifically, DCT has
some vendor-specific APIs, which may introduce extra pro-
gramming difficulties and limit compatibility with different
RDMA implementations [22].

Overlay Networking: In Swift, we primarily target Sin-
gle Root I/O Virtualization (SR-IOV) and utilize hardware
features such as ASAP2 [21] to achieve efficient overlay net-
working. SR-IOV allows multiple virtual instances of a net-
work device to share the same physical hardware, providing
low-latency and high-throughput network communication cru-
cial for elastic computing tasks. Unlike other methods such
as FreeFlow [18], which rely on kernel-space solutions to
provide overlay networking, Swift avoids these approaches.
The key reason is that elastic computing tasks are typically
very short-lived and do not benefit significantly from the
ultra-portability that FreeFlow offers. By leveraging SR-IOV,
Swift can deliver the necessary performance without the addi-
tional complexity and overhead associated with kernel-space
solutions, making it a more suitable choice for the transient
nature of elastic computing workloads.

Security Considerations: An additional advantage of Swift
is its robust security for elastic computing tasks. Requests
from different users are naturally routed to separate contain-
ers, ensuring isolation and preventing cross-user interference.
Only requests from the same user are sent to the same con-
tainer, confining any potential security risks within that con-
tainer. Compared to KRCore [30], where security issues can
impact the critical path of the kernel, Swift offers a signifi-
cantly higher security level, making it a more practical and
secure solution for elastic computing.
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4.3 Implementation
We implemented the Swift prototype based on OpenWhisk, a
widely-adopted open-source serverless framework, to demon-
strate its functionalities [4]. We primarily modified the logic
of the invoke module in OpenWhisk to explicitly identify
cold, warm, and fork starts, facilitating our evaluation in §5.

We also built a Docker container that includes our opti-
mized libibverbs library. Additionally, we implemented
the logic of the INIT process using C and provided a Python
wrapper. The INIT process accepts parameters such as the
remote gid.

It is worth noting that in the implementation of Swift,
there are no modules tightly coupled to a specific version of
Linux kernel, making Swift a versatile solution for use in
production environments.

5 Evaluation
In this section, we will evaluate how Swift performs by fo-
cusing on answering four questions:

• How does our optimized libibverbs outperforms official
libibverbs? The optimized libibverbs can improve
the performance of critical path in the RDMA control plane
by up to 10× (§5.2).

• How does Swift perform in the RDMA control plane for
three typical use scenarios: cold start, warm start, and fork
start? The performance of Swift is within approximately
6.5% of the optimal solution in all cases (§5.3).

• How does Swift perform in the RDMA data plan? Swift
achieves 30.56−46.50% higher average throughput and
18.55−37.21% lower latency than KRCore (§5.4).

• What’s the compatibility capacity of Swift? Swift is com-
patible with all the test kernel versions (§5.5).

5.1 Evaluation Methodology
Testbed Setup: Our testbed comprises two servers, each
equipped with two Intel Xeon Gold 5218R CPUs and 256GB
of memory. Both servers are fitted with dual-port Mellanox
ConnectX-5 series RDMA NICs. We run Ubuntu 22.04 with
kernel version 5.15.0 as the operating system. For the server-
less computing service backend, we use Docker 27.0.3, along
with the LXCFS service to restrict containers to view only their
allocated CPUs. The two servers are connected to a Mellanox
SN2700 ethernet switch via 100Gbps links. PFC and ECN
are configured as recommended in previous works [12].
Schemes Compared: We mainly compare Swift with the
following schemes:

• Baseline: For cold start and warm start, we execute a sim-
ple program without RDMA communication, such as cat,
in the container to act as the baseline. For fork start, we
will use a different baseline, which will be elaborated in
detail in §5.3.3.
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Figure 6: Comparison of libibverbs Performance.

• libibverbs: We adopt the unmodified official
libibverbs from RDMA Core User-space Libraries and
Daemons (version 52.0) [19]. We use libibverbs alone
with the standard Mellanox OFED software [23].

• KRCore: KRCore operates primarily within the kernel
space, aiming to minimize the overhead associated with
RDMA operations by handling control plane activities
more efficiently [30]. We will downgrade the OS version to
18.04 and kernel version to 4.15.0-46-generic as suggested
in the KRCore paper when performing KRCore related
experiments.

5.2 Performance of libibverbs
In this section, we evaluate the performance of our opti-
mized libibverbs library. We compare it with the official
libibverbs library described in §5.1. To determine whether
increased computational resources can enhance the RDMA
control plane, we conduct evaluations using an increasing
number of CPUs. We measure the execution time of several
representative RDMA control APIs. The results are presented
in Figure 6, with the total time for a critical path necessary to
set up an RDMA connection shown as a dashed line.

Figure 6a illustrates the performance of the control plane
using the official libibverbs. As mentioned earlier, due
to its unoptimized implementation, the critical path reaches
25ms, with ibv_open_device accounting for over 90% of
the time. Additionally, we observe significant performance
oscillations, making the RDMA control plane impractical for
elastic computing with strict latency requirements. Finally,
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allocating more CPUs does not lead to better performance.
In contrast, Figure 6b demonstrates the performance of our

optimized libibverbs. We note that by leveraging caching
optimization mechanisms, the most notable improvement is in
ibv_open_device, which reduces latency to around 1.8ms,
resulting in a critical path performance of approximately
2.2ms, an 11.4× improvement.

5.3 Control Plane Performance
In this section, we primarily evaluate the performance of the
RDMA control plane using different schemes. We measure
the end-to-end time of three different scenarios — cold start,
warm start, and fork start — from the initiation of the request
(e.g., container launch) until a QP connection is established.
The results are shown in Figure 7, and we will describe each
scenario in detail in the following sections. All results are the
average of 10 runs.

5.3.1 Cold Start
Figure 7a shows the end-to-end times for cold start achieved
by different schemes. We observe that, in general, all schemes
achieve similar end-to-end times. The primary reason is that
the container launch time in the cold start scenario consumes
around 318ms (aligned with previous work [1]), thus account-
ing for the majority of the end-to-end time. Specifically, it con-
stitutes 99.9%, 93.5%, and 99.0% for KRCore, libibverbs,
and Swift, respectively.

The results indicate that in the cold start scenario, the choice
of scheme does not significantly impact the end-to-end perfor-
mance. This confirms our finding that extreme microsecond-
level optimizations are often unnecessary, and an appropriate
design based on the use case is more beneficial.

5.3.2 Warm Start
Figure 7b shows the end-to-end times of warm start. The
baseline shows the time to execute a simple command with
an existing container is around 89ms on our testbed, which is
also aligned with existing work [1]. We also observe that un-
modified libibverbs cause significant overhead, achieving
40.0% longer end-to-end time.

In contrast, KRCore and Swift achieves similar end-to-end
time. Swift achieves around 2.2% longer end-to-end time,

which can be ignored in most real-world scenarios. The results
demonstrate that by properly optimizing the libibverbs, it
can be a simple yet effective solution for warm start scenario.

5.3.3 Fork Start

In this section, we evaluate the RDMA control plane perfor-
mance in the fork start scenario. Unlike cold and warm starts,
fork start can achieve super-fast launch times within several
milliseconds. However, the performance of fork is influenced
by various factors. To ensure a fair comparison, we will care-
fully choose our baseline with the following guidelines:

1. We will use a Python process for evaluation since Python is
widely supported by various serverless frameworks such as
AWS Lambda [3], OpenWhisk [4], etc. While C processes
are fast to fork, they are rarely used in fork-start use cases.

2. The Python process will only import essential packages
such as numpy and os. Additionally, we import pyverbs
wrappers for libibverbs and Swift.

3. For KRCore, we design a wrapper to initiate the necessary
system calls.

4. For KRCore and libibverbs, we first fork the process
and then set up an RDMA connection via their standard
APIs.

We measure the time from invoking the fork call until
the RDMA connection is set up. The evaluation results are
shown in Figure 7c. We have the following observations: (1)
The baseline for forking a Python process (with some nec-
essary packages imported) is approximately 1383.86µs. (2)
Since libibverbs takes more than 25ms to set up a connec-
tion, it makes the end-to-end performance of fork-start 25×
longer, rendering it impractical for fork-start use cases. (3)
KRCore takes around 1402.56µs end-to-end time, which is
1.4% slower than the baseline. (4) Swift is 6.5% slower than
the baseline and 5.1% slower than KRCore.

Considering Swift’s lossless performance in the data
plane (as shown in §5.4) and its simplicity to implement, we
believe that Swift is a viable solution for fork-start serverless
tasks.

10



0 5 10 15 20 25
Thread Number

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Th
ro

ug
hp

ut
 (O

p/
s)

1e6
Swift
KRCore

(a) Throughput [sync]

0 5 10 15 20 25
Thread Number

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
te

nc
y 

(
s)

Swift
KRCore

(b) Latency [sync]

0 5 10 15 20 25
Thread Number

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
 (O

p/
s)

1e7
Swift
KRCore

(c) Throughput [async]

0 5 10 15 20 25
Thread Number

0

2

4

6

8

10

La
te

nc
y 

(
s)

Swift
KRCore

(d) Latency [async]

Figure 8: Performance of RDMA One-sided READ
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Figure 9: Performance of RDMA One-sided WRITE

5.4 Data Plane Performance
In this section, we evaluate the data plane performance of
Swift by considering both throughput and latency for one-
sided and two-sided RDMA operations. Similar to previous
work [30], we evaluate both sync and async cases. Specif-
ically, in the sync case, each client issues RDMA requests
to one server in a run-to-completion manner to achieve low
latency. For the async case, each client posts requests in
batches to achieve peak throughput. Each client is handled
by a separate thread, and we report the average latency and
aggregated throughput. All results represent the average of 10
runs. Additionally, we vary the number of threads to simulate
different levels of network load. We do not include results
achieved by libibverbs as they should be similar to those
of Swift.

5.4.1 One-sided RDMA Operations

RDMA READ: The performance results of one-sided
RDMA READ are shown in Figure 8. Generally, the through-
put achievedx in the async case is much higher than in
the sync case, while the latency of the sync case is lower
than that of the async case, consistent with our assumptions.
Considering throughput, although both Swift and KRCore
show a nearly linear increase with the number of threads,
Swift consistently outperforms KRCore across all thread
numbers. Specifically, Swift achieves 42.12% and 46.50%
higher throughput than KRCore in sync and async cases,
respectively. These improvements are more pronounced with
a higher number of concurrent clients/threads, demonstrating
Swift ’s good scalability.

Regarding latency, Swift consistently achieves lower la-

tency than KRCore. Specifically, Swift achieves 28.25% and
22.6% lower latency than KRCore in sync and async cases,
respectively.

We attribute the performance improvements to two fac-
tors: (1) Although KRCore’s data plane features zero data
copy, it does not bypass the kernel. Therefore, the overhead
of system calls exists in KRCore, increasing latency and re-
ducing the total number of requests it can process. In contrast,
Swift features a complete kernel-bypass feature as original
libibverbs. (2) The DCT QP has higher latency than the
RC QP, consistent with previous observations [17].

RDMA WRITE: The performance results of one-sided
RDMA WRITE, shown in Figure 9, exhibit a similar trend
to one-sided RDMA READ. Swift achieves higher through-
put than KRCore by 34.11% and 40.76% in sync and async
cases, respectively. For latency, Swift shows 30.26% and
21.94% better results in both cases.

5.4.2 Two-sided RDMA Operations

Figure 10 shows the performance results of two-sided RDMA
SEND and RECEIVE operations. Similar to previous re-
sults, Swift consistently outperforms KRCore in terms of
both throughput and latency. Specifically, in sync and async
communication, Swift achieves 36.55% and 30.56% better
throughput, along with 37.21% and 18.55% lower latency,
respectively.

Another notable observation is that Swift achieves very
stable performance with low latency, while KRCore suffers
from significant performance oscillation. For example, in the
sync case, KRCore’s latency spikes to over 10µs at several
points. We speculate that this performance oscillation is due
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Figure 10: Performance of RDMA Two-sided SEND/RECEIVE

Kernel Version Swift libibverbs KRCore

6.2.0-26-generic ✓ ✓ ✗
5.15.0-25-generic ✓ ✓ ✗
4.15.0-213-generic ✓ ∗ ✓ ✗
4.15.0-46-generic ✓ ∗ ✓ ✓

Table 1: Compatibility of Different Schemes (✓ denotes fully
compatible, ✓ ∗ denotes compatible with minor modification
and ✗ denotes not compatible).

to the nature of DCT QP, where a re-connection may lead to
high latency fluctuations. This further demonstrates that for
applications requiring ultra-low latency, KRCore may result
in suboptimal performance and high random tail latency.

5.5 Compatibility
In this section, we evaluate the compatibility of all schemes
by testing them against different kernel versions that ship with
major Ubuntu Linux distributions. The results are presented
in Table 1.

Both libibverbs and Swift exhibit good compatibility,
as they do not require kernel modifications to function cor-
rectly. libibverbs can be successfully compiled, installed,
and evaluated across all tested kernel versions. Similarly,
Swift can be seamlessly compiled, installed, and evaluated
with newer kernel versions, requiring only minor modifica-
tions for compatibility with kernel versions earlier than 5.9.0-
rc7. This is because Swift relies on copy-on-fork to maintain
proper functionality. For earlier kernel versions, Swift can
use the ibv_fork_init API at the beginning of the INIT
process to handle fork function calls correctly.

In contrast, KRCore suffers from poor compatibility, as it
can only be successfully compiled and installed on the spe-
cific kernel version 4.15.0-46-generic. For other tested kernel
versions, including the closely related 4.15.0-213-generic, KR-
Core fails to function correctly due to challenges in applying
the required kernel patches.

6 Related Works
Optimizing Task Startup Time in Serverless Computing:
To fully exploit the advantages of dynamic scaling brought by
elastic computing, numerous works have focused on optimiz-
ing task startup time, particularly for serverless computing.

Slacker optimizes container launch time by identifying and
prioritizing significant packages and loading others lazily [14].
SOCK further reduces overhead by caching the Python run-
time environment to avoid the large initialization costs of
Python packages [24]. SAND reduces task launch time through
application-level sandboxing [1]. Catalyzer combines forking
with serverless frameworks to reduce task startup time to the
millisecond level [7]. MITOSIS leverages RDMA to acceler-
ate the propagation of container instances, thereby improving
serverless task launch time. [31]. IGNITE shows that existing
modern serverless frameworks do not fully leverage language
runtime optimizations and proposes orchestrating runtimes
across machines for code optimization to further reduce task
startup time [5]. Swift provides a simple-yet-effective solu-
tion to enable RDMA for elastic computing, which can benefit
all these works.
Optimizing RDMA Applications: Many research works
have focused on optimizing RDMA applications, both in the
data plane and control plane. FaSST uses two-sided unreli-
able datagrams to achieve fast, scalable, and simple distributed
transactions in the data plane [17]. XSTORE designs a fast
RDMA-based ordered key-value store using a remote learned
cache [29]. Wukong leverages RDMA-based graph explo-
ration to provide highly concurrent and low-latency queries
over large graph data sets [26]. Octopus provides an RDMA-
enabled distributed persistent memory file system [20]. For
control planes, LITE proposes kernel RDMA support for dat-
acenter applications [27]. Furthermore, KRCore designs and
implements a kernel-based solution to provide microsecond-
level connection setup capabilities for elastic computing [30].
Swift is orthogonal to these data plane optimizations since it
does not modify the RDMA data plane and can enable these
optimizations in serverless computing. In contrast, compared
to existing kernel-based RDMA solutions, Swift achieves
comparable control plane performance for elastic computing
while preserving lossless data plane performance.

7 Conclusion
Our paper revisits the use of RDMA in elastic computing.
By challenging two long-held assumptions—that the user-
space RDMA control plane is slow and difficult to share—
we propose a simple yet effective solution, Swift. Swift
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efficiently handles cold and warm serverless requests by
rapidly initializing the RDMA control plane using a cache-
optimized libibverbs and supports fork requests by harness-
ing RDMA’s fork capability. Experimental results show that,
compared to kernel-based solutions, Swift achieves compa-
rable RDMA control plane performance for serverless com-
puting while significantly improving throughput and reducing
latency in the data plane.
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