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Abstract
Distributed GNN training systems typically partition large
graphs into multiple subgraphs and train them across mul-
tiple workers to eliminate single-GPU memory limitations.
However, the graph propagation in each iteration involves nu-
merous one-to-many multicast and many-to-one aggregation
operations across workers, resulting in massive redundant
traffic and severe bandwidth bottlenecks. Offloading multi-
cast and aggregation operations into programmable switches
has the potential to reduce the traffic volume significantly.
Unfortunately, the complex dependencies among graph data
and the limited switch-aggregator resources lead to perfor-
mance degradation. The graph-agnostic sending order results
in excessive traffic in multicast operations, leading to a se-
vere backlog. Additionally, a small number of vertices may
consume the major part of aggregator resources, while most
traffic misses the opportunity for in-network aggregation.

To tackle these challenges, we propose SwitchGNN, which
accelerates graph learning through coordinated in-network
multicast and aggregation. First, to alleviate the link under-
utilization and queue backlog, we design a graph-aware mul-
ticast reordering algorithm, which prioritizes the upload of
multicast vertices with the higher number of neighbors to re-
duce the communication time. Second, to prevent aggregator
overflow, SwitchGNN employs a multi-level graph partition-
ing mechanism that further partitions boundary vertices into
independent blocks to perform in-network aggregation in
batches while ensuring the correctness of the graph propa-
gation. We implement SwitchGNN using P4 programmable
switch and DPDK host stack. The experimental results of
the real testbed and NS3 simulations show that SwitchGNN
effectively reduces the communication overhead and speeds
up the training time by up to 74%.

1 Introduction

In recent years, Graph Neural Networks (GNNs) are widely
applied to graph-related downstream tasks such as recommen-

dation systems [1], drug discovery [2], public health surveil-
lance [3, 4], and knowledge graphs [5] due to their ability to
capture structured information from graph-based data. How-
ever, real-world graph data is becoming increasingly large.
For instance, ByteDance observes over 2 billion vertices and
2 trillion edges with 100TB of graph data in production [6].
Training such massive graphs on a single worker or a sin-
gle GPU is challenging because of memory limitations. To
address this problem, a series of distributed GNN training
frameworks [7–9] is proposed to partition the large graph into
multiple subgraphs for parallel training on multiple GPUs.

Unfortunately, distributed GNN training generates massive
communication traffic during the iterative graph propaga-
tion phase, which can account for up to 80% of the epoch
time [10, 11] and become a training bottleneck. Specifically,
the feature of each vertex is multicast to its remote neigh-
bors located on different workers. Meanwhile, the worker
receives features of the vertex’s remote neighbors in a many-
to-one fashion, aggregates them, and applies neural-network
operations to compute the new vertex embeddings. Several
solutions [6, 12–14] use sampling methods to reduce traffic
volume. However, the absence of global graph information
leads to low model quality. Existing full-graph training so-
lutions alleviate communication overhead through efficient
pipeline scheduling [15] or optimized graph partitioning al-
gorithms [8]. However, these approaches rely on host-based
multicast and aggregation, which still generate significant one-
to-many redundant traffic and cause substantial many-to-one
bandwidth bottlenecks, resulting in long epoch time.

With the emergence of programmable switches, a potential
optimization for GNN training is to offload multicast and
aggregation operations into the switches, thereby eliminat-
ing one-to-many and many-to-one bottlenecks, respectively.
Specifically, each vertex is sent only once from the worker to
the switch, and the switch then multicasts the vertex to the
aggregators corresponding to its neighbors. Each aggregator,
upon receiving all the required features, sends the aggregated
result to the corresponding vertex. As a result, for each ver-
tex, the worker receives only one single aggregated feature



from its neighbors. In the ideal case, in-network multicast
and aggregation can significantly reduce the communication
volume from O(EM2) to O(EM), where E and M represent
the number of boundary vertices and workers, respectively.

Existing in-network multicast and aggregation techniques
are typically used in distributed DNN training [16–18] and
word count [19], where the data is independent and can be mul-
ticast and aggregated in any order. However, graph-agnostic
in-network multicast and aggregation are far from the ideal
case. First, it is challenging to synchronize the multicast of
these dependent vertices. Any straggling machine will cause
aggregators to wait for long time until all necessary data ar-
rives for aggregation. Second, the number of vertices with
dependency is significantly large, creating an enormous de-
mand for switch aggregator resources. For instance, the Reddit
dataset with 32 workers needs approximately 500MB-sized
aggregators for aggregation, while programmable switches
typically have only around 10-100MB of memory [20, 21].
As a result, when a small portion of the graph data occupies
all the switch’s aggregator resources during multicast, the ma-
jority of the data must still be aggregated at the host, leading
to substantial traffic.

To tackle these issues, we propose SwitchGNN, which
leverages graph-aware in-network multicast and aggregation
to reduce network traffic during graph propagation. First, to
minimize communication time, we employ a graph-aware
multicast reordering algorithm to determine the sending order
of multicast vertices at the host. Vertices with a larger number
of neighbors are prioritized for sending, ensuring a more effi-
cient forwarding pipeline. Moreover, SwitchGNN addresses
the limited aggregator resources by breaking a part of depen-
dencies and partitioning boundary vertices from a large con-
nected graph into multiple independent blocks. SwitchGNN
aggregates vertices of each block in batches to ensure that
switch-aggregator constraints are met.

In summary, the contributions of the paper are as follows:

• We identify that the one-to-many and many-to-one traffic
generated during graph propagation in full-graph train-
ing is the key performance bottleneck. We reveal that
though in-network multicast and aggregation techniques
can eliminate this bottleneck, the complex dependencies
between graph vertices still degrade performance.

• We propose SwitchGNN, a graph-aware in-network mul-
ticast and aggregation solution for GNN training. First,
we introduce a graph-aware multicast reordering algo-
rithm to reorder the sending sequence of multicast ver-
tices, minimizing communication time. Then, it uses
a multi-level graph partitioning algorithm to break the
dependency within large connected boundary vertices
and perform batch aggregation, preventing aggregator
overflow and reducing traffic volume.

• We implement SwitchGNN using P4-programmable

switches and DPDK-based host protocol stacks. Exper-
imental results of testbed and NS3 simulations show
that compared to the state-of-the-art GNN systems, we
reduce epoch time by up to 74% without losing accuracy.

2 Background and Motivation

2.1 Distributed GNN

Graph Neural Networks are special neural networks designed
to learn from graph-structured data. For example, Graph Con-
volutional Networks (GCNs) [22] extend convolution opera-
tions to graph domains. In each GCN layer, an aggregation
operation (e.g., sum, mean, or max) collects features from
each vertex’s neighbors, followed by a neural network trans-
formation that generates a new embedding for the vertex. This
process is known as graph propagation. After multiple layers
of graph propagation, the resulting embeddings, which encode
structural information, are used for downstream tasks such
as node classification and link prediction. Formally, a graph
is defined as G = (V,E,F), where V , E, and F represent the
set of vertices, the set of edges, and the feature associated
with each vertex, respectively. The graph propagation can be
expressed as follows:

a(k)v = AGGREGATE(k)
({

x(k−1)
u | u ∈ N(v)

})
, (1)

x(k)v = UPDATE(k)
(

a(k)v ,x(k−1)
v

)
, (2)

where N(v) denotes neighbor vertices of vertex v, x(k)u is the
feature vector of vertex u at the k-th layer, AGGREGATE(k)

is a function that aggregates features from neighbors of ver-
tex v to produce the aggregated result a(k)v , and UPDATE(k)

computes the new feature vector for vertex v.
GNN training can be categorized into two approaches:

mini-batch and full-graph training. Mini-batch training (e.g.,
DGL [7] and PyG [12]) samples a subset of vertices and
their neighbors in each iteration, addressing the GPU memory
limitation issue. However, this approach lacks global graph in-
formation, leading to unstable convergence and low accuracy.
Therefore, we focus on full-graph training, which leverages
the entire graph’s features for training, achieving higher con-
vergence accuracy [15].

In distributed GNN training, large graphs are partitioned
into multiple subgraphs and distributed across different work-
ers for parallel training. During each iteration’s graph propa-
gation phase, when a vertex’s neighbors are located on remote
workers, the features are transmitted over the network, result-
ing in significant communication overhead. Existing frame-
works commonly employ the graph partitioning algorithm
such as METIS [23] to balance the number of vertices in each



subgraph while minimizing the number of edges across sub-
graphs. This algorithm balances computational load across
workers and reduces inter-worker communication volume.

2.2 All-to-all Communication
In distributed full-graph training, each epoch involves all-to-
all communication between vertices and their remote neigh-
bors. This can be viewed from two perspectives: sending and
receiving. From the sending perspective, for the vertex v with
dv neighbors, the host-based multicast must copy its data dv
times and send it to dv remote neighbors, causing large re-
dundant traffic. From the receiving perspective, dv features
from dv remote neighbors are pulled for host-based aggrega-
tion, leading to many-to-one bandwidth contention. The more
remote neighbors the vertices have, the greater the all-to-all
traffic and communication overhead.
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Figure 1: Feature size and traffic size of different datasets.

We next analyze the boundary vertex size and traffic vol-
ume in realistic datasets. We use METIS [23] to partition
the graph across varying numbers of workers. Three differ-
ent datasets Ogbn-products [24], Reddit [25], and Yelp [26]
are partitioned. Figure 1 shows that, while the boundary ver-
tex size remains relatively stable as the number of workers
increases, the traffic volume grows significantly. This is be-
cause, although the number of vertices per worker decreases,
the average number of neighbors per vertex increases. Since
the Reddit graph is denser than the others, it has more average
neighbor partitions, resulting in the highest traffic volume.
Specifically, in Reddit with 128 partitions, the traffic volume
is 16 times the boundary size, meaning that, on average, the
worker generates 1-to-16 copies of each vertex when send-
ing and causes 16-to-1 bandwidth contention when receiv-
ing. Thus, host-based multicast and aggregation will induce
significant one-to-many redundant traffic and many-to-one
bandwidth contention.

2.3 Promise of In-network Multicast and Ag-
gregation

2.3.1 Strength and limitation of programmable switch

Programmable switches, such as Intel Tofino, offer flexible
packet processing capabilities, allowing users to define cus-

tom packet-handling logic. These switches utilize memory
(stateless metadata and stateful registers) to store packet states
and perform basic calculations. Many existing works lever-
age programmable switches to improve transmission perfor-
mance. For instance, flexible in-network multicast mecha-
nisms [27–29] enable stateless or hybrid multicast by parsing
routing information carried in packet headers. In-network
aggregation protocols [16–19, 30] offload key-value aggrega-
tion functions to switches to accelerate distributed machine
learning and typical MapReduce jobs. Specifically, the switch
memory is organized as an array of aggregators. The val-
ues with the same key from different workers are stored and
aggregated in the aggregator with the same index. Once ag-
gregation is complete, the results are sent back to the host via
packets, and the aggregators are reallocated for other keys.
These approaches significantly reduce traffic volume and net-
work latency by using the programmability of switches. This
provides an opportunity to leverage in-network multicast and
aggregation to accelerate distributed GNN training.

However, programmable switches still face several limi-
tations. Limited memory resources (e.g., 10MB to 100MB
[20,21]) restrict the switch’s ability to buffer and process large-
scale traffic. The limited number of pipeline stages constrains
the deployment of complex dependency logic. A packet can
only access a stateful register once during a single pipeline
pass. These constraints introduce challenges for offloading
more advanced network functions to the switch.

2.3.2 Strawman solution

Indeed, offloading the multicast and aggregation operations
into the switch for sending and receiving data can significantly
reduce traffic volume. Specifically, each vertex’s feature only
needs to be sent once to the switch. The switch then mul-
ticasts this feature to the corresponding workers. For any
vertex, all its neighbor features are aggregated on the switch,
mitigating the many-to-one bottleneck. Assuming the graph
is partitioned across M workers, with each worker having
E boundary vertices on average, in the extreme case where
boundary vertices are fully connected, the host-based multi-
cast and aggregation will generate 2EM2 traffic, with EM2

for sending and EM2 for receiving. However, the in-network
multicast and aggregation will only generate 2EM traffic, EM
for sending, and EM for receiving, thus reducing the traffic
volume to 1

M of the former one.
Thus, we design a strawman solution that leverages in-

network multicast and aggregation to accelerate GNN training.
First, each worker sends the features of boundary vertices to
the switch using a best-effort approach. On the switch, each
feature is copied dv times into dv aggregators corresponding
to its dv neighbors. For each aggregator, the received features
are accumulated and then dropped until it receives all required
features from the neighbors of the destination vertex. Once
the aggregation is complete, the result is forwarded to the



corresponding worker, and the aggregator is released for reuse
by other vertices. If no aggregators are available when new
data arrives at the switch, the current feature will be directly
sent to the worker for aggregation.

2.4 Problem Insight
The strawman solution appears the significant potential to
reduce traffic volume. However, directly applying in-network
multicast and aggregation introduces two key problems: (1)
The graph-agnostic multicast order results in link under-
utilization and severe queue backlog. (2) The huge and inter-
dependent vertex features are difficult to fit into the limited
aggregators, leading to aggregator overflow and nullifying the
traffic reduction.
2.4.1 Experimental observations

We conduct the NS3 simulations to reveal the problem of
the strawman solution. We set up a star topology with 128
workers connected to one switch, and each link has 100Gbps
bandwidth. We partition the Ogbn-product, Yelp, and Reddit
datasets across 128 workers using the METIS [23] algorithm.
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Figure 2: The performance of strawman solution.

We evaluate the performance of the strawman solution
with 100MB switch memory (aggregators) and with unlim-
ited switch memory, respectively. We measure the real-time
aggregation throughput, aggregator occupancy, and queue
length under the Reddit dataset with 128 workers. To clearly
observe the buffer requirements, we set the buffer size to
10GB to avoid the drastic performance fluctuations caused by
packet loss and timeout retransmissions. As shown in Figure
2(a), although the total throughput under the 100MB con-
straint (100MB-Tot) is very high, the aggregation throughput
(100MB-Aggr) is significantly lower than that of Straw-UL
(UL-Aggr). During this process, as shown in Figure 2(b), the

100MB aggregator has been nearly fully occupied. Moreover,
we observe that both the 100MB and unlimited cases experi-
ence significant queue backlog, as shown in Figure 2(c).

We further measure the traffic volume under the full-graph
and strawman solutions. As shown in Figure 2(d), under the
100MB (Straw-100MB) aggregator constraint, the generated
traffic volume of strawman is only slightly lower than that of
the full-graph approach, but significantly higher than the un-
limited case (Straw-UL). Specifically, for the Reddit dataset,
the traffic volume in the Straw-UL is reduced by 94% and 92%
compared to the full-graph and Straw-100MB, respectively.

2.4.2 Deep dive

Next, we dive into the causes of performance degradation in
the strawman multicast and aggregation approach. Existing in-
network multicast and aggregation techniques are commonly
used to accelerate distributed machine learning jobs where
data is independent. However, in GNNs, graph data depen-
dencies are complex. The graph-structure-agnostic manner of
the strawman solution leads to inefficient forwarding pipeline
and severe aggregator overflow.

The graph-agnostic multicast order results in an ineffi-
cient forwarding pipeline. During the aggregation process,
switch aggregators must wait for data from all participating
vertices. Meanwhile, if a vertex completes multiple aggre-
gations after being multicast to aggregators, multiple aggre-
gation results are generated and sent to the workers. The
strawman solution multicasts vertices to aggregators in ran-
dom order. Due to the complex dependencies in graph data,
some vertices are uploaded without timely completion of ag-
gregation, leading to link under-utilization. Conversely, other
vertices quickly complete a large number of aggregations after
being uploaded, causing high queuing delays.

Input

Output
T0 T1

Switch

Input

Output

Switch

Figure 3: Graph-structure agnostic sending order leads to link
under-utilization and queue backlog.

Figure 3 illustrates the link under-utilization and queue
backlog due to graph-agnostic multicast order. At time T0,
two vertices with a degree of 2 arrive to the switch and mul-
ticast to two aggregators, each waiting for aggregation to
complete. During this time, the output throughput remains
at 0. At time T1, although only one vertex is uploaded, it
completes the aggregation for 4 aggregators simultaneously,
however, causing a queue buildup at the output port. For in-
stance, as shown in Figure 2(a) and Figure 2(c), under both
Straw-UL and Straw-100MB, the queue backlog is severe.
Specifically, from time 0ms to 1ms, the queue length rapidly
increases from 0MB to 1000MB.



The huge and interdependent vertex features lead to
aggregator overflow. A vertex’s multicast on the switch con-
sumes a number of aggregators equal to the number of its
neighbors. However, the vertex required for these neighbors’
aggregation also depends on their own neighbors. Due to the
large number of dependent vertices (i.e., large connected sub-
graphs), multicasting these dependent vertices consumes far
more aggregator resources than the programmable switch can
support. As a result, a massive traffic is sent directly to the
workers due to aggregator collisions, missing the in-network
aggregation opportunities.

Multicast

Aggregation

Figure 4: The memory demand of the large number of depen-
dent vertices exceeds the switch memory size.

For example, as shown in Figure 4, when three dependent
red vertices are simultaneously multicast at the switch, 10
aggregators are required, but the switch can only provide 4
aggregators, leaving the remaining 6 features unable to use
in-network aggregation. The experimental results in Figure
2(b) show that when aggregator resources are unlimited, the
aggregation resource usage is approximately 500MB. There-
fore, under the 100MB resource constraint, severe aggregator
overflow occurs. With a 100MB aggregator limit, the aggre-
gation throughput is significantly reduced to only about 10%
of the total throughput.

2.5 Summary
In distributed full-graph training, the graph propagation with
host-based multicast and aggregation causes large redundant
traffic and severe bandwidth contention, respectively. Using
in-network multicast and aggregation can significantly re-
duce traffic volume, but the strawman solution suffers from
queue backlog and aggregator overflow due to complex ver-
tex dependencies. Therefore, we need to carefully design
a collaborative in-network multicast and aggregation based
on graph-structured data to fully leverage the potential of
in-network multicast and aggregation.

3 SwitchGNN Design

3.1 Architecture and Workflow
We propose a solution to accelerate full-graph training using
programmable switches. This solution performs collaborative
in-network multicast and aggregation during graph propaga-
tion, thereby reducing network traffic volume.

Figure 5 shows SwitchGNN’s architecture. We assume that
the full graph has already been partitioned into multiple work-
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Programmable SwitchWorker
③ Reliability and congestion control

Distributed GNN Training
① Graph-aware 

multicast reordering 
② Multi-level 

graph partitioning

Figure 5: SwitchGNN’s architecture.

ers. First, the host reschedules the sending order of vertices to
optimize the forwarding pipeline, alleviating the link under-
utilization and queue backlog. Second, to prevent aggregator
overflow, we employ a multi-level graph partitioning mech-
anism to break the dependencies among boundary vertices.
Moreover, we still transmit the traffic from cut edges to guar-
antee the correct graph propagation. The workers follow the
predefined sending order to minimize communication time,
while the switch stores the connectivity information between
vertices for in-network multicast and aggregation. Third, we
design the reliability and congestion control mechanisms to
guarantee the correct aggregation and avoid network conges-
tion in all-to-all transmission. Finally, the switch receives the
feature of each vertex and multicast it to the aggregators cor-
responding to its neighbors. The aggregators aggregate the
features from multiple workers and the aggregation results
are sent back to the corresponding workers.
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Figure 6: SwitchGNN’s workflow.

We use an example to illustrate SwitchGNN workflow. As
shown in Figure 6, we assume that vertices 1, 2, and 3 are
interdependent and partitioned into three different workers.
During the graph propagation, they need to exchange features
over the network. In the feature sending step, vertices 1, 2, and
3 send their features to the switch, which multicasts them to
the corresponding aggregators A{1,2}, A{1,3}, and A{2,3},
where aggregators A1, A2, and A3 correspond to destination
vertices 3, 2, and 1, respectively. Once the aggregators have



received all the required neighbor features for each destination
vertex, vertices 1, 2, and 3 receive the aggregated results from
aggregators A3, A2, and A1. As a result, each of the three
vertices sends only one feature and receives one aggregated
feature. When all vertices have completed their transmissions,
the communication for the current GNN layer is finished.

3.2 Graph-Aware Multicast Reordering
We reorder the multicast sequences of vertices according to
the graph structure to minimize the communication time.

3.2.1 Problem statement

Given a graph G(V,E) comprising n vertices, e edges, along
with a designated vertex sequence S = (v1,v2, ...,vn) to be
sent to a switch, assume that At denotes the set of vertices
that arrive to the switch at time t. At most k packets can enter
the switch and k packets leave the switch in each time slot.
When t ≤ n/k, the switch receives v(t−1)k+1 to vtk; otherwise,
it receives v(t−1)k+1 to vn. Therefore, we have

At =

{ ⋃tk
i=(t−1)k+1{vi}, t ≤ n/k,⋃n
i=(t−1)k+1{vi}, t > n/k.

(3)

We define gt(vi) as the number of aggregation results com-
pleted when vertex vi arrives at switch at time t. Let f (t)
denote the number of aggregators that complete the aggrega-
tion at time t, with the resulting packets queued at the switch.
Then we have

f (t) = ∑
vi∈At

gt(vi). (4)

Let Q(t) represent the number of packets waiting for trans-
mission after time t, and assume Q(0) = 0. Then we have

Q(t) = max{ f (t)+Q(t −1)− k,0}. (5)

The job completion time z is given by

z = ⌈n
k
⌉+ ⌈

Q(⌈ n
k ⌉)

k
⌉, (6)

where ⌈ n
k ⌉represents the time required for all vertices to arrive

at the switch, and ⌈Q(⌈ n
k ⌉)

k ⌉ represents the time required to
drain the remaining queued packets at the switch after the last
vertex has arrived. The objective is to find an optimal vertex
sequence S to minimize z.

3.2.2 Lightweight solution

Considering the high complexity and substantial time cost
in deriving the optimal solution, we propose a heuristic al-
gorithm that maintains a manageable level of complexity for
graph-aware multicast reordering.

First, we aim to minimize the aggregation time for features
to avoid a large number of features waiting for aggregation
at the switch, which leads to link under-utilization. When
the vertices multicast into the aggregators, completing these
aggregations quickly requires that other vertices destined for
the same aggregators are also multicast immediately. These
vertices are connected through a common one-hop neighbor,
which links them together in the aggregation process. Thus,
we use a priority-based breadth-first search (BFS) schedul-
ing approach. Starting from a randomly selected vertex, its
neighboring vertices are added to the sending queue, ensuring
that closely related vertices are transmitted in close time. This
reduces the waiting time of aggregators.
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Figure 7: The CDF of neighbor counts.

Second, to alleviate the queue backlog, we introduce prior-
ity scheduling based on vertex degree. We observe that vertex
degrees are skewed. For example, Figure 7 shows the cumu-
lative distribution function (CDF) of neighbor counts. In the
Reddit dataset, with 32 workers, 20% of vertices account for
80% of the total neighbors. If high-degree vertices are sent
later, there is a higher probability of triggering a large number
of aggregations at once, leading to traffic bursts. However,
by sending higher-degree vertices earlier, as smaller-degree
vertices are uploaded, aggregations are completed gently, en-
abling a more efficient forwarding pipeline and reducing the
queue backlog. Thus, we enhance the BFS approach by as-
signing priority based on vertex degree, where higher-degree
vertices are transmitted earlier in the sequence.
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As illustrated in Figure 8, the vertex sequence is generated
according to our priority-based BFS. We randomly select ver-
tex 1 from the graph to enqueue. Vertex 1 is then dequeued,
and its neighbor vertices 3 and 5 are enqueued. Since vertex 5



has more neighbors than vertex 3, vertex 5 will be dequeued
first. Then, vertex 5’s neighbor, vertex 7, is enqueued. As
vertex 3 and vertex 7 have the same number of neighbors,
the earlier enqueued vertex 3 will be dequeued before vertex
7. Vertex 9, with only one neighbor, will be dequeued last.
Note that we track each enqueued vertex to ensure that each
vertex is enqueued only once. The final vertex sequence is the
order in which the vertices are dequeued. In non-in-network
aggregation methods, high-degree vertices will generate more
redundant traffic. However, in SwitchGNN, high-degree ver-
tices uploaded to the switch do not immediately generate
multicast traffic. Instead, they first occupy the aggregator’s
memory and trigger data transmission to the worker only after
other required neighboring vertices arrive and complete aggre-
gation. This multicast reordering strategy optimizes pipeline
efficiency, mitigates queue backlog.

Next, to demonstrate the effectiveness of the graph-aware
multicast reordering mechanism, we quantitatively analyze
two typical graph structures of star graph (non-uniform) and
ring graph (uniform), and discuss the performance difference
between the priority-based BFS strategy (PB) and the random
ordering (RO). In the star topology, consider the undirected
graph G1(V,E), where vertex set is V = {v1,v2, ...,vn}, and
edge set is E = {(v1,v2),(v1,v3), ...,(v1,vn)}. The degree of
the central vertex is d(v1) = n− 1, while all other vertices
have degree 1, i.e., d(v2) = · · ·= d(vn) = 1.. PB selects the
vertex v1 as the root of BFS, resulting in a traversal sequence
{v1,v2, ...vn}. According to the derivation in 3.2.1, we assume
that k = 1, and the total execution time of PB is n. RO ran-
domly selects vertices, and the total execution time of RO
depends on the position of vertex v1. The optimal case of RO
is that v1 is selected first, and the total execution time is n. In
the worst case, the last choice is v1, and the total execution
time is 2n−1; The average execution time is 3n−1

2 .
In the ring topology, we construct an undirected graph

G2(V,E), where vertices is V = {v1,v2, ...,vn}, and edge set
is E = {(v1,v2),(v2,v3), ...,(vn−1,vn),(vn,v1)}. All vertices
have a degree of 2. When n = 3, both strategies take the same
execution time. When n ≥ 4, the total execution time under
PB is n+2, the best execution time under RO is n+1, and
the worst execution time under RO is n+2.

The degree distribution characteristics of graph struc-
tures impact the performance of heuristic ordering strate-
gies. SwitchGNN outperforms random ordering in graphs
with non-uniform degree distributions, while both strategies
show similar performance in graphs with uniform degree.
Thus, SwitchGNN achieves greater benefits in skewed graphs,
which is common in real-world scenarios [31].

3.3 Multi-level Graph Partitioning

The required number of aggregators is directly related to the
maximum number of dependent vertices. Here, we analyze
the size of related boundary vertices across different datasets.
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Figure 9: The total boundary and max. connected feature size.

Figure 9 shows the total boundary and maximum connected
vertices size under different datasets. The results show that
nearly 99% of boundary vertices exhibit dependency relation-
ships, thus the aggregator demand far exceeds the switch’s
memory capacity. To address this issue, in addition to partition
the full graph across multiple workers, we further partition the
connected boundary vertices into multiple blocks by cutting
edges, thereby breaking their dependencies. These blocks are
then transmitted one by one. The next block is processed only
after the transmission of the previous one is complete. By
ensuring that the number of vertices in each block does not
exceed the available aggregator resources, we eliminate aggre-
gator overflow. However, breaking the dependencies changes
the original graph structure, leading to incorrect graph propa-
gation and low model quality.

To maintain correct aggregation, data exchange is still re-
quired between cut edges. Thus, SwitchGNN groups the cut
edges into a new block, and the partitioning continues until all
blocks are small enough to fit within the aggregator limits. To
fully utilize aggregator resources while minimizing the extra
traffic caused by cut edges, we use the METIS algorithm for
boundary vertices partitioning.

Partition

Block 1 Block 2 Block 3 Cut Edges

Figure 10: Multi-level graph partitioning.

Figure 10 shows an example of multi-level graph partition-
ing. We assume that a connected subgraph with 13 boundary
vertices is to be multicast and aggregated on a switch with
a limit of 4 aggregators. First, through graph partitioning, 4
edges are cut, resulting in 3 blocks, each with a size of 4
vertices. The subgraph formed by the cut edges has a size of
5, so it will continue to undergo the next level of partitioning
until all blocks are smaller than 4. Then, by batch-processing
the multicast and aggregation of vertices within each block,
SwitchGNN completely avoids aggregator overflow. The time



complexity of METIS is O(|E|+ |V |), while the multicast re-
ordering method has a time complexity of O(|E|+ |V |log|V |),
where |E| and |V | denote the number of edges and vertices, re-
spectively. For large graphs, Par-METIS method can be used
to partition the graph in parallel. After multi-level partitioning
is completed, vertices within each partitioned block can also
be reordered in parallel, significantly reducing pre-processing
time. Besides, SwitchGNN is still compatible with any ad-
vanced graph partitioning techniques to improve performance.

In the pre-processing phase, Graph-Aware Multicast Re-
ordering and Multi-level Graph Partitioning mechanisms de-
termine the multicast order and blocks of vertices, and this
information is distributed to the corresponding hosts. Each
host only needs to send its local vertices to the switch accord-
ing to the predefined block_id and vertex order. Note that,
each host must wait until the current block’s transmission is
completed before sending the next block. Once a host receives
all the aggregation results in the current block, it sends the
current block_id and its host_id to the switch. The switch
keeps track of the current block_id and the number of hosts
that have completed transmission for that block. When all
hosts have completed the transmission of vertices for the cur-
rent block, the switch multicasts the current block_id to all
workers. Upon receiving the block completion signal from
the switch, the workers send the vertices of next block.

3.4 Reliability and Congestion Control
In-network multicast and aggregation break the traditional
end-to-end connections, where a single packet at the switch
is replicated into multiple packets, and multiple packets are
aggregated back into one packet by the switch. Therefore, we
need to redesign the reliability guarantee and congestion con-
trol mechanisms to ensure correct and efficient transmission.

For reliability guarantee, when a vertex is sent, SwitchGNN
maintains two bitmaps for each vertex to track the status of
its neighbors at the host. One bitmap records the acknowledg-
ment status of the sent vertex features, while the other tracks
the reception status of each vertex’s neighbor features. Upon
receiving the aggregation result, the corresponding reception
bitmap is set to all ones, and the worker multicasts ACKs to
the vertex’s neighbors. When the sending bitmap becomes all
ones, it indicates that the vertex’s transmission has success-
fully completed. When receiving a data packet of a vertex,
the worker first determines whether the packet is a complete
aggregation result from the switch. If a non-aggregated fea-
ture is received, the non-aggregated feature is cached in the
worker. When other boundary vertices in the worker also need
to participate in aggregation with this non-aggregated feature,
they can share it from the local cache instead of fetching it
again from remote workers, thereby reducing network traffic.
Additionally, SwitchGNN employs a timeout mechanism to
handle packet loss caused by network congestion. When a
worker exceeds the timeout threshold without receiving fea-
tures from the current block, it pulls the required features

of the unaggregated vertices from other workers. Once the
pulled packets arrive at the switch, the corresponding aggre-
gators are released. The features pulled from the worker are
marked as "bypass", meaning they no longer participate in
switch-based aggregation but are directly forwarded to the
host for aggregation.

For congestion control, SwitchGNN continuously sends
vertices according to the scheduling order and adjusts the
sending rate according to the Explicit Congestion Notification
(ECN) marking, similar to DCQCN [32]. Upon receiving an
ECN marking, the sending rate is halved. If the network is
not congested, the sending rate increases additively.

4 Implementation

We implement SwitchGNN using Data Plane Development
Kit (DPDK) protocol stack and P4-Programmable switch.

Host. On the host side, SwitchGNN is used as a plugin
integrated with the DGL framework. We modify the commu-
nication context of DGL by using SwitchGNN with DPDK
host stack. In the DPDK, we use rte_pktmbu f _mtod_o f f set
to add SwitchGNN’s header fields after the IP header,
which includes 32bit Src_id, 32bit Dst_id, 16bit Block_id,
16bit Count, 1bit Is_ACK, 1bit Is_Fetch, 1bit ECN, and 1bit
Resend fields. The Src_id and Dst_id fields carry the IDs
of source vertex and destination vertex, respectively. The
Block_id field is used to notice the transmission batch, ensur-
ing that the same block’s features participate in in-network
aggregation in the same batch. The Count field carries the
number of boundary neighbors for the current vertices. The
Is_ACK and Is_Fetch fields are used to identify the type
of packet, indicating whether it is an acknowledgment or a
fetch request, respectively. The ECN field is marked when
the switch queue length exceeds a certain threshold, while the
Resend field is set to 1 for retransmitted packets.

Switch. On the switch, we store the mapping relationship
between each vertex ID and its corresponding aggregator
indexes in the table. When a packet arrives, it can directly
query the table using the source vertex ID to determine which
aggregators should be aggregated at. In SwitchGNN, each
aggregator is allocated 128 bytes for aggregation. The aggre-
gator format is similar to ATP [16]. The difference is that
instead of using a bitmap to track which vertices have been
added in the aggregator, we determine aggregation comple-
tion according to the aggregation count. To avoid errors from
duplicate accumulation due to retransmitted packets, we mark
these packets with a Resend flag. When such a packet reaches
the switch, it releases the corresponding aggregator and is
directly forwarded to the designated worker for aggregation.

To multicast the packet into multiple aggregators, the same
register needs to be accessed multiple times. However, Tofino
switch allows a packet to access a register only once per
pipeline pass. Therefore, after accumulating the payload into
the first aggregator, we loop the packet back to the ingress



pipeline for subsequent aggregator operations until all multi-
cast aggregators are accessed.

Moreover, SwitchGNN adopts in-network aggregation only
for traffic that crosses hosts or racks, while GPUs within the
same host use NVLink or PCIe for communication. When
workers are distributed across multiple switches, multi-level
aggregation is required. SwitchGNN uses a mechanism sim-
ilar to existing in-network aggregation solutions [16, 18].
SwitchGNN needs to extend packet headers and aggregator
fields to record the level of each switch. For example, in a two-
level aggregation with three switches, two level-1 switches
perform partial aggregation for directly connected workers,
and their partial aggregation results are then forwarded to a
level-2 switch for final aggregation.

5 Testbed Evaluation
5.1 Setup

Topology. We evaluate SwitchGNN using a star topology,
which contains one switch and eight GPU servers. All servers
connect to the switch via 100Gbps links. The switch is an
Intel Wedge 100BF-32X programmable switch with 10MB
memory. Each server has an RTX3090 GPU with CUDA 11.2,
Ubuntu 20.04, 100GbE Mellanox CX5 NIC, 20 CPU cores
and 64GB memory. We deploy one worker per server.

Datasets and models. We use three popular graph datasets
in our evaluation, including Ogbn-products [24], Yelp [26],
and Reddit [25]. The graph details are shown in Table 1. In
addition, we train a 4-layer GCN with 128 hidden units and
set the initial learning rate to 0.01 on the above datasets.

Table 1: Datasets Details.

Dataset Vertices Edges Feature Classes
Ogbn-products 2.4M 62M 100 47

Yelp 0.72M 7M 300 100
Reddit 0.23M 114M 602 41

Baselines. We compare SwitchGNN with state-of-the-art
full-graph GNN training systems, such as BNS-GCN [8] and
G3 [15]. BNS-GCN reduces communication overhead during
graph propagation by sampling neighbors with a sampling rate
p. To ensure full-graph training, we set p in BNS-GCN to 1.
For BNS-GCN and SwitchGNN, we use METIS for the graph
partitioning. G3 uses locality-aware iterative partition [15]
to balance the communication load among workers. For a
fair comparison, we implement the transport protocols of all
baselines using DPDK. The transport protocols of BNS-GCN
and G3 are implemented according to DCQCN.

Metrics. We adopt three evaluation metrics, including train-
ing throughput, real-time loss and GPU utilization in our
experiments. The training throughput is the number of pro-
cessed vertices per second of all workers. Real-time loss is
the curve of training loss changing with time. We select one
of the workers to observe the real-time GPU utilization.

5.2 Training Throughput
We evaluate the training throughput (measured in 104 vertices
per second) of SwitchGNN under varying numbers of workers
(e.g., 5∼8) with 4 GNN layers, and under different numbers
of GNN layers using 8 workers, respectively. We compare
SwitchGNN with baselines such as BNS-GCN and G3.

As shown in Figure 11 and 12, BNS-GCN achieves the
lowest training throughput since it suffers from severe one-
to-many and many-to-one bottlenecks. G3 outperforms BNS-
GCN by balancing traffic volume among workers, avoiding
the straggler problem caused by skewed traffic. However, G3
does not reduce the overall traffic volume, as there are still
many redundant packets and significant many-to-one band-
width contention in the network. SwitchGNN achieves the
highest training throughput across all three datasets under dif-
ferent numbers of workers and GNN layers. This is because
SwitchGNN eliminates the one-to-many and many-to-one bot-
tlenecks by leveraging collaborative in-network multicast and
aggregation, effectively reducing traffic volume. Moreover, as
the number of workers increases, the benefits of SwitchGNN
grow since the proportion of communication time relative
to computation time increases. Specifically, SwitchGNN im-
proves training throughput by up to 54% and 24% compared
to BNS-GCN and G3, respectively.

5.3 Real-time Loss
Next, we compare SwitchGNN with baselines in performance
of time-to-accuracy. All training systems are trained in an
8-worker cluster using three datasets: Ogbn-products, Reddit
and Yelp. We record the real-time loss during the training.

As shown in Figure 13, SwitchGNN achieves the fastest
convergence across different datasets, without any loss in
accuracy compared to BNS-GCN and G3. This is because, al-
though SwitchGNN partitions boundary vertices into multiple
blocks for in-network aggregation using a multi-level graph
partitioning algorithm, it still transmits features associated
with cut-edges, ensuring the correctness of graph propagation.
The performance improvement of SwitchGNN is more signif-
icant on the denser datasets such as Yelp and Reddit than on
the relatively sparse Ogbn-products dataset, as dense graphs
generate more redundant traffic and experience more severe
many-to-one bandwidth contention under BNS-GCN and G3.

5.4 GPU Utilization
We evaluate the GPU utilization of one randomly selected
worker from an 8-worker cluster. We use the Ogbn-products,
Yelp and Reddit datasets to train the GCN model under
SwitchGNN and our baselines. We show the GPU utiliza-
tion over 10 seconds. Figure 14 shows the GPU utilization of
SwitchGNN compared with full-graph training systems. We
observe that SwitchGNN utilizes more GPU resources than
BNS-GCN and G3. The reason is that SwitchGNN directly
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Figure 11: Training throughput under varying number of workers.
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Figure 12: Training throughput under varying number of GNN layers.
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Figure 13: Time to accuracy.
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Figure 14: Real-time GPU utilization.

reduces the traffic volume, reducing the communication time
and contributing to higher GPU utilization.

6 Simulation Evaluation
We conduct NS3 simulations to evaluate the performance of
SwitchGNN in the large-scale scenarios. We use the star topol-
ogy with 128 hosts and each host connects to the switch with
100Gbps bandwidth link and 2µs propagation delay. Based
on the configuration of mainstream ASIC switches, the to-
tal aggregator size is set from 10MB to 100MB [20, 21]. By
default, the switch memory size is 100MB. We compare the

performance of BNS-GCN, G3, strawman solution (Straw),
and SwtichGNN. We use three realistic graph workloads, in-
cluding Ogbn-products, Yelp and Reddit. When scaling up the
number of workers to 128, the dataset is re-divided into 128
partitions. The evaluation metrics include epoch time, traf-
fic volume, queue length, and aggregation throughput. The
epoch time consists of the communication time for a 4-layer
GCN propagation in NS3 network combined with the average
computation time per epoch during training in the testbed.
Traffic volume refers to the data generated by one layer of
GCN propagation.



BNS-GCN
Straw

G3
SwitchGNN

Ep
oc

h 
Ti

m
e 

(m
s)

0

20

40

60

80

100

Number of Workers
32 64 96 128

(a) Ogbn-products

BNS-GCN
Straw

G3
SwitchGNN

Ep
oc

h 
Ti

m
e 

(m
s)

0

20

40

60

80

Number of Workers
32 64 96 128

(b) Yelp

BNS-GCN
Straw

G3
SwitchGNN

Ep
oc

h 
Ti

m
e 

(m
s)

50

100

150

200

250

Number of Workers
32 64 96 128

(c) Reddit

Figure 15: Epoch time under the varying number of workers with star topology.
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Figure 16: Epoch time under the varying number of workers with leaf-spine topology.

6.1 Basic Performance

First, we evaluate the basic performance of SwitchGNN using
the same experimental setup as in the motivation section. As
shown in Figure 2(d), across all three datasets, SwitchGNN
significantly reduces traffic volume compared to the straw-
man approach. This reduction is achieved through multi-
level graph partitioning, which effectively prevents aggre-
gator overflow and thus substantially reduces traffic volume.
However, to maintain correct aggregation after graph parti-
tioning, SwitchGNN introduces some additional traffic, mak-
ing its traffic size slightly larger than the UL case. Figures
2(a) and 2(b) demonstrate that SwitchGNN utilizes aggre-
gator resources without overflow, maintaining high aggrega-
tion throughput. Moreover, due to the priority-based BFS
algorithm that reorders the multicast sequence, SwitchGNN
achieves a more efficient pipeline and avoids queue backlog,
as illustrated in Figure 2(c).

Note that, under SwitchGNN, the synchronization process
of each block between hosts and switches can be affected
by straggling workers. As shown in Figures 2(a) and 2(b),
the observed fluctuations in throughput and aggregator oc-
cupancy are caused by per-block synchronization. However,
since SwitchGNN significantly reduces traffic volume, it still
achieves low communication time.

6.2 Performance under Different Conditions

Then, we measure the epoch time of BNS-GCN, G3, Straw-
man solution, and SwitchGNN under varying numbers of
workers and different workloads. As shown in Figure 15,
across all three datasets, the epoch time of BNS-GCN, G3,

and the strawman solution increases rapidly as the number of
workers grows. This is because more workers result in each
vertex needing to be replicated to more neighbors, introducing
the one-to-many and many-to-one bottlenecks. Although G3
balances the communication load across workers, it does not
reduce the overall traffic volume, still leading to high epoch
time. In contrast, SwitchGNN leverages in-network multicast
and aggregation to reduce traffic volume, effectively elim-
inating the one-to-many and many-to-one bottlenecks, and
preventing significant traffic increases as the number of work-
ers grows. Specifically, under Reddit dataset, SwitchGNN
reduces epoch time by up to 74%, 65%, and 83% compared
to BNS-GCN, G3, and strawman solution, respectively.

Besides, we conduct the experiments on an 8×8 leaf-spine
topology in a typical datacenter, consisting of 8 leaf switches
and 8 spine switches. Each leaf switch connects to 16 hosts,
resulting in a total of 128 hosts. Each leaf switch connects the
same number of workers, with at most one worker per host.
For SwitchGNN, the in-network multicast and aggregation
operations are deployed on the leaf switches. As a result,
the traffic undergoes up to two levels of aggregation. The
experimental results are shown in Figure 16. As the number
of workers increases, cross-rack communication traffic also
grows. Once cross-rack communication becomes the primary
bottleneck, the epoch time increases rapidly. SwitchGNN
reduces traffic in each rack through hierarchical aggregation,
achieving the lowest epoch time.

6.3 Effectiveness of GAMR
Moreover, we evaluate the effectiveness of the graph-aware
multicast reordering (GAMR). We measure the maximum



queue length and throughput for Ogbn-products and Reddit
datasets under varying switch memory from 10MB to 100MB.
We set the switch buffer size to a very large value to observe
the buffer requirements of different methods.
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Figure 17: Performance under different workloads.

As shown in Figure 17, the results show that the perfor-
mance of SwitchGNN with GAMR is significantly better
than that without GAMR. GAMR enhances the pipeline ef-
ficiency for each block, improving the overall aggregation
throughput. Moreover, as the switch memory increases, the
maximum queue length under SwitchGNN without GAMR
grows rapidly. This is because larger switch memory can
hold more features waiting for aggregation, and the graph-
agnostic sending order may cause a small number of packets
to trigger larger aggregation results, leading to a huge traffic
volume and severe queue backlog in a short time. Without
GAMR, SwitchGNN experiences more severe queue backlog
and throughput loss under the denser Reddit graph than that
under Ogbn-products. This is because each vertex in Reddit
has a higher degree, resulting in longer wait time for neighbors
to arrive at the switch. By prioritizing high-degree boundary
vertices for transmission, GAMR improves the throughput
and alleviates the queue backlog.

6.4 Traffic Size under Varying Switch Memory
In this section, we evaluate the traffic size under different
switch memory with 64 and 128 workers, respectively. As
shown in Figure 18, the benefits of SwitchGNN become more
significant as the number of workers increases. This is because
a higher number of workers results in more copies of features
being generated; SwitchGNN eliminates this redundant traf-
fic through in-network multicast and aggregation. Moreover,
Figure 18(f) shows that with only 10 MB memory, the traffic
reduction is limited to 23%, whereas with 100 MB memory,

the traffic size is reduced by 81%. This is because, under
the smaller aggregator size, the graph is divided into more
partitions during the multi-level partitioning process, thereby
increasing traffic due to cut edges.
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Figure 18: Traffic volume under varying switch memory.

As shown in Figures 18(b), 18(d) and 18(f), the dense graph
(Reddit) generates more redundant traffic compared to the
sparse graphs (Ogbn-products and Yelp). Thus, with larger
memory size (100 MB), SwitchGNN delivers greater improve-
ments for dense graphs. However, under limited memory
(10MB), it is hard to partition dense graphs to eliminate inter-
vertex dependencies, resulting in more cut edges. SwitchGNN
shows better improvement for sparse graphs under limited
memory.

6.5 Effectiveness of Congestion Control
Additionally, we validate the effectiveness of SwitchGNN’s
congestion control. We inject the background traffic under
varying loads across 64 and 128 workers and observe the
epoch time under the Reddit dataset with and without con-
gestion control (CC). The background flows are randomly
generated across all workers. The flow size follows the re-
alistic datacenter workload of Hadoop and their arrival rate
follows the Poisson distribution.

As shown in Figure 19, as the background traffic load in-
creases, the SwitchGNN without CC suffers from significant
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Figure 19: Epoch time under varying traffic load.

performance degradation, whereas the SwitchGNN with CC
can maintain a short epoch time.

7 Related Work

Mini-batch GNN training. DGL [7] distills several gener-
alized sparse tensors from the GNNs’ computation for mas-
sive parallelization. AGL [33] adopts a message transform
method and is implemented on MapReduce [34] to support
mini-batch GNN training. BGL [6] co-designs the caching
policy and sampling order, reducing the communication over-
head in feature retrieving. PaGraph [35] utilizes spare GPU
memory as a cache for storing hot data to reduce the com-
munication between CPU and GPU. GNNLab [36] proposes
a pre-sampling cache policy for efficient storage and robust
performance. P3 [37] combines model and data parallelism
to reduce the communication overhead. However, the above
approaches with mini-batch training mechanisms still face
challenges such as sampling variance, neighbor explosion,
and significant sampling overhead.

Full-graph GNN training. Full-graph training methods
can overcome the above problems of mini-batch training meth-
ods. However, these methods suffer from large communica-
tion overhead. In recent years, numerous works have been pro-
posed to reduce the communication overhead. Neugraph [38]
combines dataflow-based deep learning frameworks to accel-
erate graph training through parallel computation. ROC [39]
designs an online-learning-based graph partition algorithm to
achieve a balanced workload and employs dynamic program-
ming to optimize memory management. DGCL [40] proposes
a shortest path spanning tree algorithm to schedule traffic,
fully utilizing NVLink, PCIe, and other link bandwidths while
balancing workloads and avoiding contention. BNS-GCN [8]
randomly chooses the neighbors of boundary vertices to de-
crease the communication overhead. PipeGCN [41] achieves
an efficient pipeline to overlap communication and computa-
tion while employing a smoothing algorithm to reduce errors
incurred by stale features. Sancus [11] reduces communica-
tion overhead by adaptively caching historical embeddings.
G3 [15] further balances the communication load among
multiple workers while introducing finer-grained pipelining
through partitioned vertices into smaller bins. This approach
overlaps the communication and computation time. To ad-
dress the high CPU-GPU communication overhead caused

by duplicated traffic fetching during large-scale graph train-
ing, HongTu [9] employs a deduplication communication
framework, which transfers the redundant CPU-GPU traffic
on high-bandwidth inter-GPU links, accelerating the training.

Unfortunately, existing solutions still face the challenge
of massive traffic volume. Our design introduces in-network
multicast and aggregation for GNN training, significantly re-
ducing traffic without sacrificing training accuracy.

In-network aggregation. DAIET [42] is the first INA al-
gorithm and aggregates gradients at the switch to reduce net-
work traffic. Sharp [43] and Sharpv2 [44] reduce the traffic
by aggregating it in an aggregation tree deployed within the
switches. However, Sharp does not consider the packet loss,
which makes it unsuitable for lossy networks. SwitchML [17]
proposes a packet loss recovery mechanism to aggregate gra-
dients while providing a static and fair aggregator allocation
mechanism. PANAMA [30] supports floating-point value for
INA by using FPGA. Nevertheless, the static resource alloca-
tion of SwitchML and PANAMA leads to aggregator under-
utilization. ATP [16] addresses this problem with dynamic
hash allocation. To further improve aggregation efficiency,
A2TP [18] decouples the control of link bandwidth and in-
switch aggregators, and independently allocates the resources
according to the job and network status.

However, none of the existing INA solutions are designed
for GNN. SwitchGNN coordinates in-network multicast and
aggregation according to the graph-structure relationships,
achieving more efficient transmission.

8 Conclusion

In this paper, we propose an in-network accelerated frame-
work SwitchGNN for distributed GNN training. SwitchGNN
coordinates the in-network multicast and aggregation to re-
duce the traffic volume. First, to minimize the communication
time and alleviate queue backlog, SwitchGNN uses graph-
aware multicast reordering to schedule the multicast sequence,
achieving an efficient pipeline. Then, SwitchGNN employs
the multi-level partitioning method to avoid aggregator over-
flow. The experiment results show that SwitchGNN reduces
the epoch time by up to 74% compared to the state-of-the-art
full-graph training systems.
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